27 research outputs found

    Composition and Organization of Acute Ischemic Stroke Thrombus: A Wealth of Information for Future Thrombolytic Strategies.

    Full text link
    peer reviewedDuring the last decade, significant progress has been made in understanding thrombus composition and organization in the setting of acute ischemic stroke (AIS). In particular, thrombus organization is now described as highly heterogeneous but with 2 preserved characteristics: the presence of (1) two distinct main types of areas in the core-red blood cell (RBC)-rich and platelet-rich areas in variable proportions in each thrombus-and (2) an external shell surrounding the core composed exclusively of platelet-rich areas. In contrast to RBC-rich areas, platelet-rich areas are highly complex and are mainly responsible for the thrombolysis resistance of these thrombi for the following reasons: the presence of platelet-derived fibrinolysis inhibitors in large amounts, modifications of the fibrin network structure resistant to the tissue plasminogen activator (tPA)-induced fibrinolysis, and the presence of non-fibrin extracellular components, such as von Willebrand factor (vWF) multimers and neutrophil extracellular traps. From these studies, new therapeutic avenues are in development to increase the fibrinolytic efficacy of intravenous (IV) tPA-based therapy or to target non-fibrin thrombus components, such as platelet aggregates, vWF multimers, or the extracellular DNA network

    NLRP3 inflammasome assembly in neutrophils is supported by PAD4 and promotes NETosis under sterile conditions

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Muenzer, P., Negro, R., Fukui, S., di Meglio, L., Aymonnier, K., Chu, L., Cherpokova, D., Gutch, S., Sorvillo, N., Shi, L., Magupalli, V. G., Weber, A. N. R., Scharf, R. E., Waterman, C. M., Wu, H., & Wagner, D. D. NLRP3 inflammasome assembly in neutrophils is supported by PAD4 and promotes NETosis under sterile conditions. Frontiers in Immunology, 12, (2021): 683803, https://doi.org/10.3389/fimmu.2021.683803.Neutrophil extracellular trap formation (NETosis) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome assembly are associated with a similar spectrum of human disorders. While NETosis is known to be regulated by peptidylarginine deiminase 4 (PAD4), the role of the NLRP3 inflammasome in NETosis was not addressed. Here, we establish that under sterile conditions the cannonical NLRP3 inflammasome participates in NETosis. We show apoptosis-associated speck-like protein containing a CARD (ASC) speck assembly and caspase-1 cleavage in stimulated mouse neutrophils without LPS priming. PAD4 was needed for optimal NLRP3 inflammasome assembly by regulating NLRP3 and ASC protein levels post-transcriptionally. Genetic ablation of NLRP3 signaling resulted in impaired NET formation, because NLRP3 supported both nuclear envelope and plasma membrane rupture. Pharmacological inhibition of NLRP3 in either mouse or human neutrophils also diminished NETosis. Finally, NLRP3 deficiency resulted in a lower density of NETs in thrombi produced by a stenosis-induced mouse model of deep vein thrombosis. Altogether, our results indicate a PAD4-dependent formation of the NLRP3 inflammasome in neutrophils and implicate NLRP3 in NETosis under noninfectious conditions in vitro and in vivo.This work was supported by a grant from National Heart, Lung, and Blood Institute of the National Institutes of Health (grant R35 HL135765) and a Steven Berzin family support to DDW, an Individual Erwin Deutsch fellowship by the German, Austrian and Swiss Society of Thrombosis and Hemostasis Research to RES, a Whitman fellowship (MBL) to DDW, and an Individual Marie SkƂodowska-Curie Actions fellowship by the European Commission (796365 - COAGULANT) to PM. ANRW was funded by the Deutsche Forschungsgemeinschaft (TRR156/2 –246807620) and a research grant (We-4195/15-19). CMW was supported by the Division of Intramural Research, NHLBI, NIH

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Étude translationnelle de l’impact des phĂ©nomĂšnes thromboinflammatoires Ă  la phase aiguĂ« de l’ischĂ©mie cĂ©rĂ©brale : physiopathologie et applications thĂ©rapeutiques

    No full text
    Strokes are a growing challenge in public health given their current rise in absolute number and their associated morbimortality. Strokes related to a large vessel occlusion (LVO) are the most severe sharing the worst functional outcome of all strokes. A better understanding of stroke pathophysiology is crucial to develop new therapeutic strategies and improve patient functional outcome after this life-changing event. While the main goal of LVO treatment is to obtain the quickest recanalization achievable, growing evidence suggests that a combined approach targeting the deleterious effect of thromboinflammation could improve stroke outcome. This thesis aims at studying thromboinflammation using a translational approach going back and forth between the laboratory’s bench and the patient’s bed. Two axes involving the same actors of thromboinflammation are developed: 1. intracranial human thrombi responsible for LVO 2. microvasculature dysfunction in the setting of acute ischemic brain tissue. In the first chapter, we highlight that LVO thrombi, irrespectively of stroke etiology, share a common structural feature: a dense surface shell encapsulating a highly heterogeneous core. A major biological and clinical implication of the core-shell structure of ischemic stroke thrombi comes from the relative resistance of their shell to tPA-mediated thrombolysis. In fact, we show that this outer shell made of densely compacted fibrillary and cellular components has a decreased sensitivity to tPA-mediated thrombolysis as compared to the thrombus inner core, and thus constitutes a shield against tPA. Targeting non-fibrin shell components might help to open breaches in the shell and thus enhance tPA efficacy. In the second chapter, using an innovative quantitative assay for markers of red blood cells (RBCs), platelets, and leukocytes, we show that cardioembolic thrombi are richer in DNA and poorer in platelet compared with non-cardioembolic thrombi. From a pathophysiological perspective, the increased DNA content of thrombi from cardioembolic origin suggests a more prominent role of leukocytes in the formation of those thrombi. Our results provide a potential basis for the development of new tools and strategies for identification of patients with cryptogenic strokes and improving secondary prevention. In the third chapter, we demonstrate, using the same quantitative approach, that the MRI-blooming artefact called the two-layer small vessel sign (TLSVS) is associated with a greater thrombus weight and a higher thrombus RBC content. Prediction of thrombus RBC content 2 could help pre-treatment decision making and selection of thrombolytics and thrombectomy devices to improve recanalization and avoid distal embolization. In chapter IV, we show that plasma levels of several neutrophil activation markers continue to progress after and despite successful removal of LVO thrombi by endovascular treatment (EVT). Among the most notable dynamic changes we observed an overall early and transient increase in MPO and H3Cit plasma levels at 1-hour post-EVT, and a gradual decrease in MMP-9 plasma levels. MPO levels rose more in patients with a poor functional outcome than in those with a good functional outcome. This situation may be seen as further evidence arguing in favor of the use of DNase as an adjuvant therapy to IV tPA and/or EVT in stroke patients. In the fifth and last chapter, we show that DNAse significantly decreased the infarct volume through a reduction of microvascular thrombosis and brain blood barrier disruption in a murine model of transient occlusion of the middle cerebral artery. This further indicate that early targeting of NETs represents a therapeutic strategy to improve the benefit of large artery recanalization in acute ischemic stroke.Les accidents ischĂ©miques cĂ©rĂ©braux (AIC) sont un enjeu majeur de santĂ© public du fait de leur morbi-mortalitĂ© Ă©levĂ©e et de leur incidence en augmentation en rapport avec le vieillissement de la population. Les AIC secondaires Ă  une occlusion proximale sont les AIC partageant le pronostic fonctionnel le plus sĂ©vĂšre. Une meilleure comprĂ©hension des phĂ©nomĂšnes physiopathologiques qui leurs sont associĂ©s est essentielle au dĂ©veloppement de nouvelles stratĂ©gies thĂ©rapeutiques afin d’amĂ©liorer le pronostic de ces patients. Alors que l’objectif principal du traitement des occlusions proximales est d’obtenir une recanalisation la plus rapide possible, de plus en plus d’arguments suggĂšrent qu’une stratĂ©gie combinĂ©e ciblant les phĂ©nomĂšnes thromboinflammatoires pourrait amĂ©liorer le pronostic des patients. En se basant sur une approche translationnelle, les objectifs de cette thĂšse sont d’apporter de nouvelles connaissances sur les phĂ©nomĂšnes thromboinflammatoires Ă  la phase aiguĂ« de l’ischĂ©mie cĂ©rĂ©brale. Deux axes faisant intervenir les mĂȘmes acteurs de la thromboinflammation sont dĂ©veloppĂ©s. 1. Une Ă©tude des thrombus intracrĂąniens responsables des occlusion proximales. 2. Une Ă©tude de la dysfonction microvasculaire pendant l’ischĂ©mie et la reperfusion du tissu cĂ©rĂ©bral. Dans le premier chapitre, nous mettons en Ă©vidence qu’indĂ©pendamment de la cause de l’AIC, les thrombus intracrĂąniens possĂšdent une structure commune : une coque dense et compacte enrobant un coeur hĂ©tĂ©rogĂšne. Une consĂ©quence biologique et clinique essentielle de cette dĂ©couverte dĂ©coule de la rĂ©sistance de la coque Ă  la thrombolyse intraveineuse par le tPA. Cibler d’autres composants de la coque que la fibrine permettrait de la fragiliser et ainsi d’augmenter l’efficacitĂ© du tPA. Dans le deuxiĂšme chapitre, Ă  l’aide d’une technique innovante de quantification des globules rouges, des plaquettes et des leucocytes, nous avons mis en Ă©vidence que les thrombus cardioemboliques sont plus riches en ADN et pauvres en plaquettes que les thrombus non cardioemboliques. D’un point de vue physiopathologique, la richesse en ADN des thrombus cardioemboliques suggĂšre un rĂŽle prĂ©dominant des leucocytes dans leur formation. Nos rĂ©sultats offrent une base de travail pour le dĂ©veloppement de nouvelles stratĂ©gies et de nouveaux outils pour le diagnostic Ă©tiologiques et l’amĂ©lioration de la prĂ©vention secondaire des AIC cryptogĂ©niques. Dans le troisiĂšme chapitre, nous dĂ©montrons, avec la mĂȘme approche quantitative, que l’artefact IRM appelĂ© two-layer small vessel sign est corrĂ©lĂ© au poids des thrombus ainsi qu’à leur contenu en globules rouges. Ces donnĂ©es offrent la possibilitĂ© de guider la prise de dĂ©cision thĂ©rapeutique avant l’administration de tPA et la rĂ©alisation d’un geste endovasculaire pour amĂ©liorer les chances de recanalisation et diminuer le risque d’embolisation distale. Dans le quatriĂšme chapitre, nous exposons que les niveaux plasmatiques de plusieurs marqueurs d’activation neutrophilaire continuent d’évoluer aprĂšs et malgrĂ© la recanalisation par geste endovasculaire. En particulier, il existe une augmentation rapide et transitoire des niveaux de MPO une heure aprĂšs le geste endovasculaire contrastant avec une dĂ©croissance progressive des niveaux de MMP-9. Dans le cinquiĂšme et dernier chapitre, nous montrons que l’administration de DNAse, dans un modĂšle d’occlusion transitoire de l’artĂšre cĂ©rĂ©brale moyenne chez le rat, est associĂ©e Ă  une rĂ©duction du volume ischĂ©mique par l’intermĂ©diaire d’une diminution de la thrombose microvasculaire ainsi que des lĂ©sions de la barriĂšre hĂ©matoencĂ©phalique. Ces donnĂ©es s’ajoutent aux prĂ©cĂ©dentes en faveur d’un bĂ©nĂ©fice clinique d’une stratĂ©gie thĂ©rapeutique ciblant prĂ©cocement les NETs en association du traitement endovasculaire Ă  la phase aiguĂ« des AIC

    Étude translationnelle de l’impact des phĂ©nomĂšnes thromboinflammatoires Ă  la phase aiguĂ« de l’ischĂ©mie cĂ©rĂ©brale : physiopathologie et applications thĂ©rapeutiques

    No full text
    Strokes are a growing challenge in public health given their current rise in absolute number and their associated morbimortality. Strokes related to a large vessel occlusion (LVO) are the most severe sharing the worst functional outcome of all strokes. A better understanding of stroke pathophysiology is crucial to develop new therapeutic strategies and improve patient functional outcome after this life-changing event. While the main goal of LVO treatment is to obtain the quickest recanalization achievable, growing evidence suggests that a combined approach targeting the deleterious effect of thromboinflammation could improve stroke outcome. This thesis aims at studying thromboinflammation using a translational approach going back and forth between the laboratory’s bench and the patient’s bed. Two axes involving the same actors of thromboinflammation are developed: 1. intracranial human thrombi responsible for LVO 2. microvasculature dysfunction in the setting of acute ischemic brain tissue. In the first chapter, we highlight that LVO thrombi, irrespectively of stroke etiology, share a common structural feature: a dense surface shell encapsulating a highly heterogeneous core. A major biological and clinical implication of the core-shell structure of ischemic stroke thrombi comes from the relative resistance of their shell to tPA-mediated thrombolysis. In fact, we show that this outer shell made of densely compacted fibrillary and cellular components has a decreased sensitivity to tPA-mediated thrombolysis as compared to the thrombus inner core, and thus constitutes a shield against tPA. Targeting non-fibrin shell components might help to open breaches in the shell and thus enhance tPA efficacy. In the second chapter, using an innovative quantitative assay for markers of red blood cells (RBCs), platelets, and leukocytes, we show that cardioembolic thrombi are richer in DNA and poorer in platelet compared with non-cardioembolic thrombi. From a pathophysiological perspective, the increased DNA content of thrombi from cardioembolic origin suggests a more prominent role of leukocytes in the formation of those thrombi. Our results provide a potential basis for the development of new tools and strategies for identification of patients with cryptogenic strokes and improving secondary prevention. In the third chapter, we demonstrate, using the same quantitative approach, that the MRI-blooming artefact called the two-layer small vessel sign (TLSVS) is associated with a greater thrombus weight and a higher thrombus RBC content. Prediction of thrombus RBC content 2 could help pre-treatment decision making and selection of thrombolytics and thrombectomy devices to improve recanalization and avoid distal embolization. In chapter IV, we show that plasma levels of several neutrophil activation markers continue to progress after and despite successful removal of LVO thrombi by endovascular treatment (EVT). Among the most notable dynamic changes we observed an overall early and transient increase in MPO and H3Cit plasma levels at 1-hour post-EVT, and a gradual decrease in MMP-9 plasma levels. MPO levels rose more in patients with a poor functional outcome than in those with a good functional outcome. This situation may be seen as further evidence arguing in favor of the use of DNase as an adjuvant therapy to IV tPA and/or EVT in stroke patients. In the fifth and last chapter, we show that DNAse significantly decreased the infarct volume through a reduction of microvascular thrombosis and brain blood barrier disruption in a murine model of transient occlusion of the middle cerebral artery. This further indicate that early targeting of NETs represents a therapeutic strategy to improve the benefit of large artery recanalization in acute ischemic stroke.Les accidents ischĂ©miques cĂ©rĂ©braux (AIC) sont un enjeu majeur de santĂ© public du fait de leur morbi-mortalitĂ© Ă©levĂ©e et de leur incidence en augmentation en rapport avec le vieillissement de la population. Les AIC secondaires Ă  une occlusion proximale sont les AIC partageant le pronostic fonctionnel le plus sĂ©vĂšre. Une meilleure comprĂ©hension des phĂ©nomĂšnes physiopathologiques qui leurs sont associĂ©s est essentielle au dĂ©veloppement de nouvelles stratĂ©gies thĂ©rapeutiques afin d’amĂ©liorer le pronostic de ces patients. Alors que l’objectif principal du traitement des occlusions proximales est d’obtenir une recanalisation la plus rapide possible, de plus en plus d’arguments suggĂšrent qu’une stratĂ©gie combinĂ©e ciblant les phĂ©nomĂšnes thromboinflammatoires pourrait amĂ©liorer le pronostic des patients. En se basant sur une approche translationnelle, les objectifs de cette thĂšse sont d’apporter de nouvelles connaissances sur les phĂ©nomĂšnes thromboinflammatoires Ă  la phase aiguĂ« de l’ischĂ©mie cĂ©rĂ©brale. Deux axes faisant intervenir les mĂȘmes acteurs de la thromboinflammation sont dĂ©veloppĂ©s. 1. Une Ă©tude des thrombus intracrĂąniens responsables des occlusion proximales. 2. Une Ă©tude de la dysfonction microvasculaire pendant l’ischĂ©mie et la reperfusion du tissu cĂ©rĂ©bral. Dans le premier chapitre, nous mettons en Ă©vidence qu’indĂ©pendamment de la cause de l’AIC, les thrombus intracrĂąniens possĂšdent une structure commune : une coque dense et compacte enrobant un coeur hĂ©tĂ©rogĂšne. Une consĂ©quence biologique et clinique essentielle de cette dĂ©couverte dĂ©coule de la rĂ©sistance de la coque Ă  la thrombolyse intraveineuse par le tPA. Cibler d’autres composants de la coque que la fibrine permettrait de la fragiliser et ainsi d’augmenter l’efficacitĂ© du tPA. Dans le deuxiĂšme chapitre, Ă  l’aide d’une technique innovante de quantification des globules rouges, des plaquettes et des leucocytes, nous avons mis en Ă©vidence que les thrombus cardioemboliques sont plus riches en ADN et pauvres en plaquettes que les thrombus non cardioemboliques. D’un point de vue physiopathologique, la richesse en ADN des thrombus cardioemboliques suggĂšre un rĂŽle prĂ©dominant des leucocytes dans leur formation. Nos rĂ©sultats offrent une base de travail pour le dĂ©veloppement de nouvelles stratĂ©gies et de nouveaux outils pour le diagnostic Ă©tiologiques et l’amĂ©lioration de la prĂ©vention secondaire des AIC cryptogĂ©niques. Dans le troisiĂšme chapitre, nous dĂ©montrons, avec la mĂȘme approche quantitative, que l’artefact IRM appelĂ© two-layer small vessel sign est corrĂ©lĂ© au poids des thrombus ainsi qu’à leur contenu en globules rouges. Ces donnĂ©es offrent la possibilitĂ© de guider la prise de dĂ©cision thĂ©rapeutique avant l’administration de tPA et la rĂ©alisation d’un geste endovasculaire pour amĂ©liorer les chances de recanalisation et diminuer le risque d’embolisation distale. Dans le quatriĂšme chapitre, nous exposons que les niveaux plasmatiques de plusieurs marqueurs d’activation neutrophilaire continuent d’évoluer aprĂšs et malgrĂ© la recanalisation par geste endovasculaire. En particulier, il existe une augmentation rapide et transitoire des niveaux de MPO une heure aprĂšs le geste endovasculaire contrastant avec une dĂ©croissance progressive des niveaux de MMP-9. Dans le cinquiĂšme et dernier chapitre, nous montrons que l’administration de DNAse, dans un modĂšle d’occlusion transitoire de l’artĂšre cĂ©rĂ©brale moyenne chez le rat, est associĂ©e Ă  une rĂ©duction du volume ischĂ©mique par l’intermĂ©diaire d’une diminution de la thrombose microvasculaire ainsi que des lĂ©sions de la barriĂšre hĂ©matoencĂ©phalique. Ces donnĂ©es s’ajoutent aux prĂ©cĂ©dentes en faveur d’un bĂ©nĂ©fice clinique d’une stratĂ©gie thĂ©rapeutique ciblant prĂ©cocement les NETs en association du traitement endovasculaire Ă  la phase aiguĂ« des AIC

    Étude translationnelle de l’impact des phĂ©nomĂšnes thromboinflammatoires Ă  la phase aiguĂ« de l’ischĂ©mie cĂ©rĂ©brale : physiopathologie et applications thĂ©rapeutiques

    No full text
    Les accidents ischĂ©miques cĂ©rĂ©braux (AIC) sont un enjeu majeur de santĂ© public du fait de leur morbi-mortalitĂ© Ă©levĂ©e et de leur incidence en augmentation en rapport avec le vieillissement de la population. Les AIC secondaires Ă  une occlusion proximale sont les AIC partageant le pronostic fonctionnel le plus sĂ©vĂšre. Une meilleure comprĂ©hension des phĂ©nomĂšnes physiopathologiques qui leurs sont associĂ©s est essentielle au dĂ©veloppement de nouvelles stratĂ©gies thĂ©rapeutiques afin d’amĂ©liorer le pronostic de ces patients. Alors que l’objectif principal du traitement des occlusions proximales est d’obtenir une recanalisation la plus rapide possible, de plus en plus d’arguments suggĂšrent qu’une stratĂ©gie combinĂ©e ciblant les phĂ©nomĂšnes thromboinflammatoires pourrait amĂ©liorer le pronostic des patients. En se basant sur une approche translationnelle, les objectifs de cette thĂšse sont d’apporter de nouvelles connaissances sur les phĂ©nomĂšnes thromboinflammatoires Ă  la phase aiguĂ« de l’ischĂ©mie cĂ©rĂ©brale. Deux axes faisant intervenir les mĂȘmes acteurs de la thromboinflammation sont dĂ©veloppĂ©s. 1. Une Ă©tude des thrombus intracrĂąniens responsables des occlusion proximales. 2. Une Ă©tude de la dysfonction microvasculaire pendant l’ischĂ©mie et la reperfusion du tissu cĂ©rĂ©bral. Dans le premier chapitre, nous mettons en Ă©vidence qu’indĂ©pendamment de la cause de l’AIC, les thrombus intracrĂąniens possĂšdent une structure commune : une coque dense et compacte enrobant un coeur hĂ©tĂ©rogĂšne. Une consĂ©quence biologique et clinique essentielle de cette dĂ©couverte dĂ©coule de la rĂ©sistance de la coque Ă  la thrombolyse intraveineuse par le tPA. Cibler d’autres composants de la coque que la fibrine permettrait de la fragiliser et ainsi d’augmenter l’efficacitĂ© du tPA. Dans le deuxiĂšme chapitre, Ă  l’aide d’une technique innovante de quantification des globules rouges, des plaquettes et des leucocytes, nous avons mis en Ă©vidence que les thrombus cardioemboliques sont plus riches en ADN et pauvres en plaquettes que les thrombus non cardioemboliques. D’un point de vue physiopathologique, la richesse en ADN des thrombus cardioemboliques suggĂšre un rĂŽle prĂ©dominant des leucocytes dans leur formation. Nos rĂ©sultats offrent une base de travail pour le dĂ©veloppement de nouvelles stratĂ©gies et de nouveaux outils pour le diagnostic Ă©tiologiques et l’amĂ©lioration de la prĂ©vention secondaire des AIC cryptogĂ©niques. Dans le troisiĂšme chapitre, nous dĂ©montrons, avec la mĂȘme approche quantitative, que l’artefact IRM appelĂ© two-layer small vessel sign est corrĂ©lĂ© au poids des thrombus ainsi qu’à leur contenu en globules rouges. Ces donnĂ©es offrent la possibilitĂ© de guider la prise de dĂ©cision thĂ©rapeutique avant l’administration de tPA et la rĂ©alisation d’un geste endovasculaire pour amĂ©liorer les chances de recanalisation et diminuer le risque d’embolisation distale. Dans le quatriĂšme chapitre, nous exposons que les niveaux plasmatiques de plusieurs marqueurs d’activation neutrophilaire continuent d’évoluer aprĂšs et malgrĂ© la recanalisation par geste endovasculaire. En particulier, il existe une augmentation rapide et transitoire des niveaux de MPO une heure aprĂšs le geste endovasculaire contrastant avec une dĂ©croissance progressive des niveaux de MMP-9. Dans le cinquiĂšme et dernier chapitre, nous montrons que l’administration de DNAse, dans un modĂšle d’occlusion transitoire de l’artĂšre cĂ©rĂ©brale moyenne chez le rat, est associĂ©e Ă  une rĂ©duction du volume ischĂ©mique par l’intermĂ©diaire d’une diminution de la thrombose microvasculaire ainsi que des lĂ©sions de la barriĂšre hĂ©matoencĂ©phalique. Ces donnĂ©es s’ajoutent aux prĂ©cĂ©dentes en faveur d’un bĂ©nĂ©fice clinique d’une stratĂ©gie thĂ©rapeutique ciblant prĂ©cocement les NETs en association du traitement endovasculaire Ă  la phase aiguĂ« des AIC.Strokes are a growing challenge in public health given their current rise in absolute number and their associated morbimortality. Strokes related to a large vessel occlusion (LVO) are the most severe sharing the worst functional outcome of all strokes. A better understanding of stroke pathophysiology is crucial to develop new therapeutic strategies and improve patient functional outcome after this life-changing event. While the main goal of LVO treatment is to obtain the quickest recanalization achievable, growing evidence suggests that a combined approach targeting the deleterious effect of thromboinflammation could improve stroke outcome. This thesis aims at studying thromboinflammation using a translational approach going back and forth between the laboratory’s bench and the patient’s bed. Two axes involving the same actors of thromboinflammation are developed: 1. intracranial human thrombi responsible for LVO 2. microvasculature dysfunction in the setting of acute ischemic brain tissue. In the first chapter, we highlight that LVO thrombi, irrespectively of stroke etiology, share a common structural feature: a dense surface shell encapsulating a highly heterogeneous core. A major biological and clinical implication of the core-shell structure of ischemic stroke thrombi comes from the relative resistance of their shell to tPA-mediated thrombolysis. In fact, we show that this outer shell made of densely compacted fibrillary and cellular components has a decreased sensitivity to tPA-mediated thrombolysis as compared to the thrombus inner core, and thus constitutes a shield against tPA. Targeting non-fibrin shell components might help to open breaches in the shell and thus enhance tPA efficacy. In the second chapter, using an innovative quantitative assay for markers of red blood cells (RBCs), platelets, and leukocytes, we show that cardioembolic thrombi are richer in DNA and poorer in platelet compared with non-cardioembolic thrombi. From a pathophysiological perspective, the increased DNA content of thrombi from cardioembolic origin suggests a more prominent role of leukocytes in the formation of those thrombi. Our results provide a potential basis for the development of new tools and strategies for identification of patients with cryptogenic strokes and improving secondary prevention. In the third chapter, we demonstrate, using the same quantitative approach, that the MRI-blooming artefact called the two-layer small vessel sign (TLSVS) is associated with a greater thrombus weight and a higher thrombus RBC content. Prediction of thrombus RBC content 2 could help pre-treatment decision making and selection of thrombolytics and thrombectomy devices to improve recanalization and avoid distal embolization. In chapter IV, we show that plasma levels of several neutrophil activation markers continue to progress after and despite successful removal of LVO thrombi by endovascular treatment (EVT). Among the most notable dynamic changes we observed an overall early and transient increase in MPO and H3Cit plasma levels at 1-hour post-EVT, and a gradual decrease in MMP-9 plasma levels. MPO levels rose more in patients with a poor functional outcome than in those with a good functional outcome. This situation may be seen as further evidence arguing in favor of the use of DNase as an adjuvant therapy to IV tPA and/or EVT in stroke patients. In the fifth and last chapter, we show that DNAse significantly decreased the infarct volume through a reduction of microvascular thrombosis and brain blood barrier disruption in a murine model of transient occlusion of the middle cerebral artery. This further indicate that early targeting of NETs represents a therapeutic strategy to improve the benefit of large artery recanalization in acute ischemic stroke

    Étude translationnelle de l’impact des phĂ©nomĂšnes thromboinflammatoires Ă  la phase aiguĂ« de l’ischĂ©mie cĂ©rĂ©brale : physiopathologie et applications thĂ©rapeutiques

    No full text
    Strokes are a growing challenge in public health given their current rise in absolute number and their associated morbimortality. Strokes related to a large vessel occlusion (LVO) are the most severe sharing the worst functional outcome of all strokes. A better understanding of stroke pathophysiology is crucial to develop new therapeutic strategies and improve patient functional outcome after this life-changing event. While the main goal of LVO treatment is to obtain the quickest recanalization achievable, growing evidence suggests that a combined approach targeting the deleterious effect of thromboinflammation could improve stroke outcome. This thesis aims at studying thromboinflammation using a translational approach going back and forth between the laboratory’s bench and the patient’s bed. Two axes involving the same actors of thromboinflammation are developed: 1. intracranial human thrombi responsible for LVO 2. microvasculature dysfunction in the setting of acute ischemic brain tissue. In the first chapter, we highlight that LVO thrombi, irrespectively of stroke etiology, share a common structural feature: a dense surface shell encapsulating a highly heterogeneous core. A major biological and clinical implication of the core-shell structure of ischemic stroke thrombi comes from the relative resistance of their shell to tPA-mediated thrombolysis. In fact, we show that this outer shell made of densely compacted fibrillary and cellular components has a decreased sensitivity to tPA-mediated thrombolysis as compared to the thrombus inner core, and thus constitutes a shield against tPA. Targeting non-fibrin shell components might help to open breaches in the shell and thus enhance tPA efficacy. In the second chapter, using an innovative quantitative assay for markers of red blood cells (RBCs), platelets, and leukocytes, we show that cardioembolic thrombi are richer in DNA and poorer in platelet compared with non-cardioembolic thrombi. From a pathophysiological perspective, the increased DNA content of thrombi from cardioembolic origin suggests a more prominent role of leukocytes in the formation of those thrombi. Our results provide a potential basis for the development of new tools and strategies for identification of patients with cryptogenic strokes and improving secondary prevention. In the third chapter, we demonstrate, using the same quantitative approach, that the MRI-blooming artefact called the two-layer small vessel sign (TLSVS) is associated with a greater thrombus weight and a higher thrombus RBC content. Prediction of thrombus RBC content 2 could help pre-treatment decision making and selection of thrombolytics and thrombectomy devices to improve recanalization and avoid distal embolization. In chapter IV, we show that plasma levels of several neutrophil activation markers continue to progress after and despite successful removal of LVO thrombi by endovascular treatment (EVT). Among the most notable dynamic changes we observed an overall early and transient increase in MPO and H3Cit plasma levels at 1-hour post-EVT, and a gradual decrease in MMP-9 plasma levels. MPO levels rose more in patients with a poor functional outcome than in those with a good functional outcome. This situation may be seen as further evidence arguing in favor of the use of DNase as an adjuvant therapy to IV tPA and/or EVT in stroke patients. In the fifth and last chapter, we show that DNAse significantly decreased the infarct volume through a reduction of microvascular thrombosis and brain blood barrier disruption in a murine model of transient occlusion of the middle cerebral artery. This further indicate that early targeting of NETs represents a therapeutic strategy to improve the benefit of large artery recanalization in acute ischemic stroke.Les accidents ischĂ©miques cĂ©rĂ©braux (AIC) sont un enjeu majeur de santĂ© public du fait de leur morbi-mortalitĂ© Ă©levĂ©e et de leur incidence en augmentation en rapport avec le vieillissement de la population. Les AIC secondaires Ă  une occlusion proximale sont les AIC partageant le pronostic fonctionnel le plus sĂ©vĂšre. Une meilleure comprĂ©hension des phĂ©nomĂšnes physiopathologiques qui leurs sont associĂ©s est essentielle au dĂ©veloppement de nouvelles stratĂ©gies thĂ©rapeutiques afin d’amĂ©liorer le pronostic de ces patients. Alors que l’objectif principal du traitement des occlusions proximales est d’obtenir une recanalisation la plus rapide possible, de plus en plus d’arguments suggĂšrent qu’une stratĂ©gie combinĂ©e ciblant les phĂ©nomĂšnes thromboinflammatoires pourrait amĂ©liorer le pronostic des patients. En se basant sur une approche translationnelle, les objectifs de cette thĂšse sont d’apporter de nouvelles connaissances sur les phĂ©nomĂšnes thromboinflammatoires Ă  la phase aiguĂ« de l’ischĂ©mie cĂ©rĂ©brale. Deux axes faisant intervenir les mĂȘmes acteurs de la thromboinflammation sont dĂ©veloppĂ©s. 1. Une Ă©tude des thrombus intracrĂąniens responsables des occlusion proximales. 2. Une Ă©tude de la dysfonction microvasculaire pendant l’ischĂ©mie et la reperfusion du tissu cĂ©rĂ©bral. Dans le premier chapitre, nous mettons en Ă©vidence qu’indĂ©pendamment de la cause de l’AIC, les thrombus intracrĂąniens possĂšdent une structure commune : une coque dense et compacte enrobant un coeur hĂ©tĂ©rogĂšne. Une consĂ©quence biologique et clinique essentielle de cette dĂ©couverte dĂ©coule de la rĂ©sistance de la coque Ă  la thrombolyse intraveineuse par le tPA. Cibler d’autres composants de la coque que la fibrine permettrait de la fragiliser et ainsi d’augmenter l’efficacitĂ© du tPA. Dans le deuxiĂšme chapitre, Ă  l’aide d’une technique innovante de quantification des globules rouges, des plaquettes et des leucocytes, nous avons mis en Ă©vidence que les thrombus cardioemboliques sont plus riches en ADN et pauvres en plaquettes que les thrombus non cardioemboliques. D’un point de vue physiopathologique, la richesse en ADN des thrombus cardioemboliques suggĂšre un rĂŽle prĂ©dominant des leucocytes dans leur formation. Nos rĂ©sultats offrent une base de travail pour le dĂ©veloppement de nouvelles stratĂ©gies et de nouveaux outils pour le diagnostic Ă©tiologiques et l’amĂ©lioration de la prĂ©vention secondaire des AIC cryptogĂ©niques. Dans le troisiĂšme chapitre, nous dĂ©montrons, avec la mĂȘme approche quantitative, que l’artefact IRM appelĂ© two-layer small vessel sign est corrĂ©lĂ© au poids des thrombus ainsi qu’à leur contenu en globules rouges. Ces donnĂ©es offrent la possibilitĂ© de guider la prise de dĂ©cision thĂ©rapeutique avant l’administration de tPA et la rĂ©alisation d’un geste endovasculaire pour amĂ©liorer les chances de recanalisation et diminuer le risque d’embolisation distale. Dans le quatriĂšme chapitre, nous exposons que les niveaux plasmatiques de plusieurs marqueurs d’activation neutrophilaire continuent d’évoluer aprĂšs et malgrĂ© la recanalisation par geste endovasculaire. En particulier, il existe une augmentation rapide et transitoire des niveaux de MPO une heure aprĂšs le geste endovasculaire contrastant avec une dĂ©croissance progressive des niveaux de MMP-9. Dans le cinquiĂšme et dernier chapitre, nous montrons que l’administration de DNAse, dans un modĂšle d’occlusion transitoire de l’artĂšre cĂ©rĂ©brale moyenne chez le rat, est associĂ©e Ă  une rĂ©duction du volume ischĂ©mique par l’intermĂ©diaire d’une diminution de la thrombose microvasculaire ainsi que des lĂ©sions de la barriĂšre hĂ©matoencĂ©phalique. Ces donnĂ©es s’ajoutent aux prĂ©cĂ©dentes en faveur d’un bĂ©nĂ©fice clinique d’une stratĂ©gie thĂ©rapeutique ciblant prĂ©cocement les NETs en association du traitement endovasculaire Ă  la phase aiguĂ« des AIC

    Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis

    No full text
    Erratum inAcute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. [Neurology. 2019]International audienceOBJECTIVES:Thrombi responsible for large vessel occlusion (LVO) in the setting of acute ischemic stroke (AIS) are characterized by a low recanalization rate after IV thrombolysis. To test whether AIS thrombi have inherent common features that limit their susceptibility to thrombolysis, we analyzed the composition and ultrastructural organization of AIS thrombi causing LVO.METHODS:A total of 199 endovascular thrombectomy-retrieved thrombi were analyzed by immunohistology and scanning electron microscopy (SEM) and subjected to ex vivo thrombolysis assay. The relationship between thrombus organization and thrombolysis resistance was further investigated in vitro using thrombus produced by recalcification of citrated whole blood.RESULTS:SEM and immunohistology analyses revealed that, although AIS thrombus composition and organization was highly heterogeneous, AIS thrombi shared a common remarkable structural feature in the form of an outer shell made of densely compacted thrombus components including fibrin, von Willebrand factor, and aggregated platelets. In vitro thrombosis experiments using human blood indicated that platelets were essential to the formation of the thrombus outer shell. Finally, in both AIS and in vitro thrombi, the thrombus outer shell showed a decreased susceptibility to tissue plasminogen activator-mediated thrombolysis as compared to the thrombus inner core.INTERPRETATION:Irrespective of their etiology and despite their heterogeneity, intracranial thrombi causing LVO have a core shell structure that influences their susceptibility to thrombolysis
    corecore