294 research outputs found
Advances in imaging of new targets for pharmacological intervention in stroke: real-time tracking of T-cells in the ischaemic brain
Background and purpose: T‐cells may play a role in the evolution of ischaemic damage and repair, but the ability to image these cells in the living brain after a stroke has been limited. We aim to extend the technique of real‐time in situ brain imaging of T‐cells, previously shown in models of immunological diseases, to models of experimental stroke.
Experimental approach: Male C57BL6 mice (6–8 weeks) (n= 3) received a total of 2–5 × 106 carboxyfluorescein diacetate succinimidyl ester (CFSE)‐labelled lymphocytes from donor C57BL6 mice via i.v. injection by adoptive transfer. Twenty‐four hours later, recipient mice underwent permanent left distal middle cerebral artery occlusion (MCAO) by electrocoagulation or by sham surgery under isoflurane anaesthesia. Female hCD2‐green fluorescent protein (GFP) transgenic mice that exhibit GFP‐labelled T‐cells underwent MCAO. At 24 or 48 h post‐MCAO, a sagittal brain slice (1500 µm thick) containing cortical branches of the occluded middle cerebral artery (MCA) was dissected and used for multiphoton laser scanning microscopy (MPLSM).
Key results: Our results provide direct observations for the first time of dynamic T‐cell behaviour in living brain tissue in real time and herein proved the feasibility of MPLSM for ex vivo live imaging of immune response after experimental stroke.
Conclusions and Implications: It is hoped that these advances in the imaging of immune cells will provide information that can be harnessed to a therapeutic advantage
A matrix-free high-order discontinuous Galerkin compressible Navier-Stokes solver: A performance comparison of compressible and incompressible formulations for turbulent incompressible flows
Both compressible and incompressible Navier-Stokes solvers can be used and
are used to solve incompressible turbulent flow problems. In the compressible
case, the Mach number is then considered as a solver parameter that is set to a
small value, , in order to mimic incompressible flows.
This strategy is widely used for high-order discontinuous Galerkin
discretizations of the compressible Navier-Stokes equations. The present work
raises the question regarding the computational efficiency of compressible DG
solvers as compared to a genuinely incompressible formulation. Our
contributions to the state-of-the-art are twofold: Firstly, we present a
high-performance discontinuous Galerkin solver for the compressible
Navier-Stokes equations based on a highly efficient matrix-free implementation
that targets modern cache-based multicore architectures. The performance
results presented in this work focus on the node-level performance and our
results suggest that there is great potential for further performance
improvements for current state-of-the-art discontinuous Galerkin
implementations of the compressible Navier-Stokes equations. Secondly, this
compressible Navier-Stokes solver is put into perspective by comparing it to an
incompressible DG solver that uses the same matrix-free implementation. We
discuss algorithmic differences between both solution strategies and present an
in-depth numerical investigation of the performance. The considered benchmark
test cases are the three-dimensional Taylor-Green vortex problem as a
representative of transitional flows and the turbulent channel flow problem as
a representative of wall-bounded turbulent flows
Design of a Modular Monolithic Implicit Solver for Multi-Physics Applications
The design of a modular multi-physics high-order space-time finite-element framework is presented together with its extension to allow monolithic coupling of different physics. One of the main objectives of the framework is to perform efficient high- fidelity simulations of capsule/parachute systems. This problem requires simulating multiple physics including, but not limited to, the compressible Navier-Stokes equations, the dynamics of a moving body with mesh deformations and adaptation, the linear shell equations, non-re effective boundary conditions and wall modeling. The solver is based on high-order space-time - finite element methods. Continuous, discontinuous and C1-discontinuous Galerkin methods are implemented, allowing one to discretize various physical models. Tangent and adjoint sensitivity analysis are also targeted in order to conduct gradient-based optimization, error estimation, mesh adaptation, and flow control, adding another layer of complexity to the framework. The decisions made to tackle these challenges are presented. The discussion focuses first on the "single-physics" solver and later on its extension to the monolithic coupling of different physics. The implementation of different physics modules, relevant to the capsule/parachute system, are also presented. Finally, examples of coupled computations are presented, paving the way to the simulation of the full capsule/parachute system
Recipients of electric-powered indoor/outdoor wheelchairs provided by a National Health Service: A cross-sectional study
This is the post-print version of the final paper published in Archives of Physical Medicine and Rehabilitation. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 by the American Congress of Rehabilitation Medicine.OBJECTIVE: To describe the characteristics, across all ages, of powered wheelchair users and the assistive technology prescribed by a regional specialist wheelchair service DESIGN: Cross-sectional study SETTING: Regional wheelchair service provided to those fulfilling strict eligibility criteria by a National Health Service serving a population of 3 million. PARTICIPANTS: 544 Electric Powered Indoor/outdoor wheelchair (EPIOC) users. INTERVENTIONS: Not applicable MAIN OUTCOME MEASURES: Demographic, clinical/diagnostic details of EPIOC recipients including pain, (kypho)scoliosis and ventilators. Technical features including specialised (adaptive) seating (SS), tilt in space (TIS), and modified control systems. Factors were related to age groups: 1 (0-15), 2 (16-24), 3 (25-54), 4 (55-74) and 5 (75+). RESULTS: 262 men mean age 41.7 (range 8-82, sd 20.7) and 282 women mean age 47.2 (range 7-92, sd 19.7) years were studied. Neurological/neuromuscular conditions predominated (81%) with cerebral palsy (CP) (18.9%) and multiple sclerosis (16.4%). Conditions presenting at birth or during childhood constituted 39%. 99 had problematic pain, 83 a (kypho)scoliosis and 11 used ventilators. SS was provided to 169 users (31%), the majority had CP or muscular dystrophy. TIS was used by 258 (53%). Younger people were more likely to receive TIS than older ones. Only 92 had SS and TIS, mean age 29 (range 8-72, sd 17.8) years. 52 used modified control systems. CONCLUSIONS: The diversity of EPIOC users across age and diagnostic groups is shown. Their complex interrelationships with these technical features of EPIOC prescription are explored. Younger users were more complex due to age-related changes. This study provides outcomes of the EPIOC prescription for this heterogeneous group of very severely disabled people
Wireless networks and EMF-paving the way for low-EMF networks of the future: the LEXNET project
While, according to the World Health Organization, no adverse health effects of radio-frequency (RF) electromagnetic fields (EMFs) have been established to date, EMF exposure from wireless communication networks is nonetheless often cited as a major cause of public concern and is frequently given considerable media coverage. This article presents the results of a new survey on RF-EMF exposure risk perception together with a comprehensive overview of the EMF footprint of existing and emerging networks. On the basis of these findings, we then put forward the rationale for EMF-aware networking. Subsequently, we highlight the gaps in existing systems, which impede EMF-aware networking, and outline the key concepts of the recently launched European Union (EU) Seventh Framework Programme (FP7) Integrated Project Low-EMF Exposure Future Networks (LEXNET): a new, all-encompassing, population-based metric of exposure and ways it can be used for low-EMF, quality of service (QoS)-aware network optimization.This paper reports work undertaken in the context of the project LEXNET. LEXNET is a project supported by the European Commission in the 7th Framework Programme (GA n°318273). For further information, please visit www.lexnet-project.e
Recommended from our members
Historical volcanism and the state of stress in the East African Rift System
Crustal extension at the East African Rift System (EARS) should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800) and find that 7 match the (approximate) geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic) variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement), transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief) and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone) and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale), suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days), but eruptions with more distal fissures tend to have lesser obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002) due to major along-rift dyking events that effectively changed the Nyamuragira stress field and the intrusion/extrusion ratios of eruptions
Antimicrobial, Antioxidant and Cytotoxic Activities and Phytochemical Screening of Some Yemeni Medicinal Plants
The traditional medicine still plays an important role in the primary health care in Yemen. The current study represents the investigation of 16 selected plants, which were collected from different localities of Yemen. The plants were dried and extracted with two different solvents (methanol and hot water) to yield 34 crude extracts. The obtained extracts were tested for their antimicrobial activity against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains using agar diffusion method, for their antioxidant activity using scavenging activity of DPPH radical method and for their cytotoxic activity using the neutral red uptake assay. In addition, a phytochemical screening of the methanolic extracts was done. Antibacterial activity was shown only against Gram-positive bacteria, among them multiresistant bacteria. The highest antimicrobial activity was exhibited by the methanolic extracts of Acalypha fruticosa, Centaurea pseudosinaica, Dodonaea viscosa, Jatropha variegata, Lippia citriodora, Plectranthus hadiensis, Tragia pungens and Verbascum bottae. Six methanolic extracts especially those of A. fruticosa, Actiniopteris semiflabellata, D. viscosa, P. hadiensis, T. pungens and V. bottae showed high free radical scavenging activity. Moreover, remarkable cytotoxic activity against FL-cells was found for the methanolic extracts of A. fruticosa, Iris albicans, L. citriodora and T. pungens. The phytochemical screening demonstrated the presence of different types of compounds like flavonoids, terpenoids and others, which could be responsible for the obtained activities
Exposure to mobile telecommunication networks assessed using personal dosimetry and well-being in children and adolescents: the German MobilEe-study
<p>Abstract</p> <p>Background</p> <p>Despite the increase of mobile phone use in the last decade and the growing concern whether mobile telecommunication networks adversely affect health and well-being, only few studies have been published that focussed on children and adolescents. Especially children and adolescents are important in the discussion of adverse health effects because of their possibly higher vulnerability to radio frequency electromagnetic fields.</p> <p>Methods</p> <p>We investigated a possible association between exposure to mobile telecommunication networks and well-being in children and adolescents using personal dosimetry. A population-based sample of 1.498 children and 1.524 adolescents was assembled for the study (response 52%). Participants were randomly selected from the population registries of four Bavarian (South of Germany) cities and towns with different population sizes. During a Computer Assisted Personal Interview data on participants' well-being, socio-demographic characteristics and potential confounder were collected. Acute symptoms were assessed three times during the study day (morning, noon, evening).</p> <p>Using a dosimeter (ESM-140 Maschek Electronics), we obtained an exposure profile over 24 hours for three mobile phone frequency ranges (measurement interval 1 second, limit of determination 0.05 V/m) for each of the participants. Exposure levels over waking hours were summed up and expressed as mean percentage of the ICNIRP (International Commission on Non-Ionizing Radiation Protection) reference level.</p> <p>Results</p> <p>In comparison to non-participants, parents and adolescents with a higher level of education who possessed a mobile phone and were interested in the topic of possible adverse health effects caused by mobile telecommunication network frequencies were more willing to participate in the study. The median exposure to radio frequency electromagnetic fields of children and adolescents was 0.18% and 0.19% of the ICNIRP reference level respectively.</p> <p>Conclusion</p> <p>In comparison to previous studies this is one of the first to assess the individual level of exposure to mobile telecommunication networks using personal dosimetry, enabling objective assessment of exposure from all sources and longer measurement periods. In total, personal dosimetry was proofed to be a well accepted tool to study exposure to mobile phone frequencies in epidemiologic studies including health effects on children and adolescents.</p
- …