63 research outputs found

    The RT-18: a new screening tool to assess young adult risk-taking behavior

    Get PDF
    Risk-taking behavior is a major determinant of health and plays a central role in various diseases. Therefore, a brief questionnaire was developed to assess risk taking among young adults with known different levels of risk-taking behavior (social drinkers and recreational drug users). In Study 1, N = 522 university students completed the RT-18 risk taking questionnaire. N = 100 students were retested after 2 to 4 weeks and performed the Cambridge Gambling Task (CGT). Mean RT-18 score was 7.69 and Cronbach’s alpha was 0.886. The test-retest reliability was r = 0.94. Significant correlation was found between the RT-18 score and CGT scores of risk taking, bet proportion, and risk adjustment. In Study 2, N = 7834 young adult social drinkers, and recreational drug users, mean RT-18 score was 9.34 and Cronbach’s alpha was 0.80. Factor analysis showed that the RT-18 comprises two factors assessing level of risk-taking behavior and risk assessment. Men scored significantly higher than women on the RT-18. Recreational drug users had significantly higher scores when compared to social drinkers. In Study 3 of N = 1000 students, construct validity was confirmed by showing that the RT-18 outcome correlates significantly with scores on the Stimulating-Instrumental Risk Inventory. In conclusion, the RT-18 is a valid and reliable screening tool to differentiate levels of risk-taking behavior. This short scale is quick and practical to administer, imposing minimal demands on participants. The RT-18 is able to differentiate risk taking and risk assessment which can help target appropriate intervention strategies

    Brief Report: Is Impaired Classification of Subtle Facial Expressions in Children with Autism Spectrum Disorders Related to Atypical Emotion Category Boundaries?

    Get PDF
    Impairments in recognizing subtle facial expressions, in individuals with autism spectrum disorder (ASD), may relate to difficulties in constructing prototypes of these expressions. Eighteen children with predominantly intellectual low-functioning ASD (LFA, IQ <80) and two control groups (mental and chronological age matched), were assessed for their ability to classify emotional faces, of high, medium and low intensities, as happy or angry. For anger, the LFA group made more errors for lower intensity expressions than the control groups, classifications did not differ for happiness. This is the first study to find that the LFA group made more across-valence errors than controls. These data are consistent with atypical facial expression processing in ASD being associated with differences in the structure of emotion categories

    A Genetic Deconstruction of Neurocognitive Traits in Schizophrenia and Bipolar Disorder

    Get PDF
    Background: Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function in healthy individuals and in the dysfunction observed in psychiatric disorders. Methods: Sets of genes associated with a range of cognitive functions often impaired in schizophrenia and bipolar disorder were generated from a genome-wide association study (GWAS) on a sample comprising 670 healthy Norwegian adults who were phenotyped for a broad battery of cognitive tests. These gene sets were then tested for enrichment of association in GWASs of schizophrenia and bipolar disorder. The GWAS data was derived from three independent single-centre schizophrenia samples, three independent single-centre bipolar disorder samples, and the multi-centre schizophrenia and bipolar disorder samples from the Psychiatric Genomics Consortium. Results: The strongest enrichments were observed for visuospatial attention and verbal abilities sets in bipolar disorder. Delayed verbal memory was also enriched in one sample of bipolar disorder. For schizophrenia, the strongest evidence of enrichment was observed for the sets of genes associated with performance in a colour-word interference test and for sets associated with memory learning slope. Conclusions: Our results are consistent with the increasing evidence that cognitive functions share genetic factors with schizophrenia and bipolar disorder. Our data provides evidence that genetic studies using polygenic and pleiotropic models can be used to link specific cognitive functions with psychiatric disorders

    Duplications in RB1CC1 are associated with schizophrenia; identification in large European sample sets

    Get PDF
    Schizophrenia (SCZ) is a severe and debilitating neuropsychiatric disorder with an estimated heritability of ~80%. Recently, de novo mutations, identified by next-generation sequencing (NGS) technology, have been suggested to contribute to the risk of developing SCZ. Although these studies show an overall excess of de novo mutations among patients compared with controls, it is not easy to pinpoint specific genes hit by de novo mutations as actually involved in the disease process. Importantly, support for a specific gene can be provided by the identification of additional alterations in several independent patients. We took advantage of existing genome-wide single-nucleotide polymorphism data sets to screen for deletions or duplications (copy number variations, CNVs) in genes previously implicated by NGS studies. Our approach was based on the observation that CNVs constitute part of the mutational spectrum in many human disease-associated genes. In a discovery step, we investigated whether CNVs in 55 candidate genes, suggested from NGS studies, were more frequent among 1637 patients compared with 1627 controls. Duplications in RB1CC1 were overrepresented among patients. This finding was followed-up in large, independent European sample sets. In the combined analysis, totaling 8461 patients and 112 871 controls, duplications in RB1CC1 were found to be associated with SCZ (P=1.29 × 10−5; odds ratio=8.58). Our study provides evidence for rare duplications in RB1CC1 as a risk factor for SCZ

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe

    The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder

    Get PDF
    Background: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. Methods: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. Results: FDRs-BD had significantly larger ICV (d = +0.16, q <.05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = −0.12, q <.05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < −0.09, q <.05 corrected); and third ventricle was larger (d = +0.15, q <.05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. Conclusions: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct
    corecore