87 research outputs found

    Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables

    Get PDF
    O objetivo deste estudo foi testar modelos empíricos de regressão linear, para a predição do acúmulo de matéria seca (TAMS) de Urochloa brizantha cv. Marandu, em função de variáveis agrometeorológicas. Para gerar os modelos, foi utilizada a taxa média de acúmulo de matéria seca, em condições de sequeiro, entre 1998 e 2002. As variáveis avaliadas foram: temperaturas mínima, máxima e média, radiação global (Rg), graus-dia, evapotranspiração real (ETR) e potencial (ETP) obtidas a partir do balanço hídrico, unidades fototérmicas (UF) e índice climático de crescimento (ICC). As regressões univariada e multivariada mostraram boa capacidade de predição, com exceção para as que utilizam a UF. Os melhores resultados foram para a regressão multivariada, com Tmín, Rg e ETR: R2, 0,84; raiz do quadrado médio do resíduo (RQMR), 14,72; e critério de informação de Akaike (CIA), 222,5. Na regressão linear univariada, destacaram-se as variáveis: graus-dia corrigido (R2, 0,75; RQMR,17,84; e CIA, 242,6), temperatura mínima corrigida (R2, 0,75; RQMR, 17,82; CIA, 244,1), e ICC (R2, 0,74; RQMR, 17,85; CIA, 236,9). A correção das variáveis agrometeorológicas pela relação entre evapotranspiração real e potencial (ETR/ETP), em geral, melhora a predição da TAMS pelos modelos. The objective of this work was to test empirical linear regression models, to predict dry matter accumulation rates (DMAR) of Urochloa brizantha cv. Marandu, using agrometeorological variables. To generate the models, the average dry matter accumulation under rainfed conditions, between 1998 and 2002, was used. The evaluated variables were: minimum, maximum and average temperatures, global radiation (GR), degree-days, actual (AET) and potential evapotranspiration (PET) obtained from the water balance, photothermal units (PU) and the climatic growth index (CGI). Except for the PU, the univariate and multivariate regressions showed good predictive ability. The best results were for the multivariate regression, with Tmín, GR and AET: R2, 0.84; root mean square residual (RMSR), 14.72; and Akaike’s information criterium (AIC), 222.5. In the univariate regression, the following variables stood out: corrected degree-days (R2, 0.75; RMSR, 17.84; CIA, 242.6), corrected minimum temperature (R2, 0.75; RMSR, 17.82; AIC, 244.1); and CGI (R2, 0.74; RMSR, 17.85; AIC, 236.9). The correction of the agrometeorological variables using the relation between real and potential evapotranspiration (AET/PET) enhances, in general, the model prediction of DMAR

    Dry matter production of Tanzania grass as a function of agrometeorological variables

    Get PDF
    O objetivo deste trabalho foi desenvolver e validar modelos de regressão linear para a estimativa de produção de matéria seca de capim‑tanzânia (Megathyrsus maximus, cultivar Tanzania) em função de variáveis agrometeorológicas. Para tanto, dados de períodos de crescimento da forragem entre 2000 e 2005, em condições de sequeiro em São Carlos, SP, foram correlacionados aos seguintes parâmetros climáticos: temperaturas mínima e média, graus‑dia, evapotranspiração potencial e atual. Foram realizadas regressões lineares simples entre as variáveis agrometeorológicas (independentes) e a taxa média de acúmulo (dependente). As estimativas foram validadas com dados independentes obtidos em São Carlos e Piracicaba, SP. Os melhores resultados estatísticos observados no desenvolvimento e na validação dos modelos foram obtidos para parâmetros agrometeorológicos que levem em consideração o efeito térmico e hídrico conjuntamente, como evapotranspiração real, acúmulo de graus‑dia corrigido pela disponibilidade hídrica e índice climático de crescimento, baseado na temperatura média, na radiação solar e na disponibilidade hídrica. Essas variáveis podem ser utilizadas em simulações e modelos para prever a produção do capim‑tanzânia.The objective of this work was to develop and validate linear regression models to estimate the production of dry matter by Tanzania grass (Megathyrsus maximus, cultivar Tanzania) as a function of agrometeorological variables. For this purpose, data on the growth of this forage grass from 2000 to 2005, under dry‑field conditions in São Carlos, SP, Brazil, were correlated to the following climatic parameters: minimum and mean temperatures, degree‑days, and potential and actual evapotranspiration. Simple linear regressions were performed between agrometeorological variables (independent) and the dry matter accumulation rate (dependent). The estimates were validated with independent data obtained in São Carlos and Piracicaba, SP, Brazil. The best statistical results in the development and validation of the models were obtained with the agrometeorological parameters that consider thermal and water availability effects together, such as actual evapotranspiration, accumulation of degree‑days corrected by water availability, and the climatic growth index, based on average temperature, solar radiation, and water availability. These variables can be used in simulations and models to predict the production of Tanzania grass

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    Funding: Data collection was largely funded by the UK Natural Environment Research Council (NERC) project TREMOR (NE/N004655/1) to D.G., E.G. and O.P., with further funds from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001) to J.V.T. and a University of Leeds Climate Research Bursary Fund to J.V.T. D.G., E.G. and O.P. acknowledge further support from a NERC-funded consortium award (ARBOLES, NE/S011811/1). This paper is an outcome of J.V.T.’s doctoral thesis, which was sponsored by CAPES (GDE 99999.001293/2015-00). J.V.T. was previously supported by the NERC-funded ARBOLES project (NE/S011811/1) and is supported at present by the Swedish Research Council Vetenskapsrådet (grant no. 2019-03758 to R.M.). E.G., O.P. and D.G. acknowledge support from NERC-funded BIORED grant (NE/N012542/1). O.P. acknowledges support from an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. R.S.O. was supported by a CNPq productivity scholarship, the São Paulo Research Foundation (FAPESP-Microsoft 11/52072-0) and the US Department of Energy, project GoAmazon (FAPESP 2013/50531-2). M.M. acknowledges support from MINECO FUN2FUN (CGL2013-46808-R) and DRESS (CGL2017-89149-C2-1-R). C.S.-M., F.B.V. and P.R.L.B. were financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001). C.S.-M. received a scholarship from the Brazilian National Council for Scientific and Technological Development (CNPq 140353/2017-8) and CAPES (science without borders 88881.135316/2016-01). Y.M. acknowledges the Gordon and Betty Moore Foundation and ERC Advanced Investigator Grant (GEM-TRAITS, 321131) for supporting the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk), within which some of the field sites (KEN, TAM and ALP) are nested. The authors thank Brazil–USA Collaborative Research GoAmazon DOE-FAPESP-FAPEAM (FAPESP 2013/50533-5 to L.A.) and National Science Foundation (award DEB-1753973 to L. Alves). They thank Serrapilheira Serra-1709-18983 (to M.H.) and CNPq-PELD/POPA-441443/2016-8 (to L.G.) (P.I. Albertina Lima). They thank all the colleagues and grants mentioned elsewhere [8,36] that established, identified and measured the Amazon forest plots in the RAINFOR network analysed here. The authors particularly thank J. Lyod, S. Almeida, F. Brown, B. Vicenti, N. Silva and L. Alves. This work is an outcome approved Research Project no. 19 from ForestPlots.net, a collaborative initiative developed at the University of Leeds that unites researchers and the monitoring of their permanent plots from the world’s tropical forests [61]. The authros thank A. Levesley, K. Melgaço Ladvocat and G. Pickavance for ForestPlots.net management. They thank Y. Wang and J. Baker, respectively, for their help with the map and with the climatic data. The authors acknowledge the invaluable help of M. Brum for kindly providing the comparison of vulnerability curves based on PAD and on PLC shown in this manuscript. They thank J. Martinez-Vilalta for his comments on an early version of this manuscript. The authors also thank V. Hilares and the Asociación para la Investigación y Desarrollo Integral (AIDER, Puerto Maldonado, Peru); V. Saldaña and Instituto de Investigaciones de la Amazonía Peruana (IIAP) for local field campaign support in Peru; E. Chavez and Noel Kempff Natural History Museum for local field campaign support in Bolivia; ICMBio, INPA/NAPPA/LBA COOMFLONA (Cooperativa mista da Flona Tapajós) and T. I. Bragança-Marituba for the research support.Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.Publisher PDFPeer reviewe

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    corecore