5 research outputs found

    CANDLES Assay for monitoring GPCR induced cAMP generation in cell cultures

    Get PDF
    Background: G protein-coupled receptors (GPCRs) represent a physiologically and pharmacologically important family of receptors that upon coupling to GιS stimulate cAMP production catalyzed by adenylyl cyclase. Thus, developing assays to monitor cAMP production is crucial to screen for ligands in studies of GPCR signaling. Primary cell cultures represent a more robust model than cell lines to study GPCR signaling since they physiologically resemble the parent tissue. Current cAMP assays have two fundamental limitations: 1) absence of cAMP kinetics as competition-based assays require cell lysis and measure only a single time-point, and 2) high variation with separate samples needed to measure consecutive time points. The utility of real-time cAMP biosensors is also limited in primary cell cultures due to their poor transfection efficiency, variable expression levels and inability to select stable clones. We therefore, decided to develop an assay that can measure cAMP not only at a single time-point but the entire cAMP kinetics after GPCR activation in untransfected primary cells.Results: CANDLES (C yclic A MP iN direct D etection by L ight E mission from S ensor cells) assay for monitoring cAMP kinetics in cell cultures, particularly in primary cultures was developed. The assay requires co-culturing of primary cells with sensor cells that stably express a luminescent cAMP sensor. Upon GPCR activation in primary cells, cAMP is transferred to sensor cells via gap junction channels, thereby evoking a luminescent read-out. GPCR activation using primary cultures of rat cortical neurons and mouse granulosa cells was measured. Kinetic responses of different agonists to adrenergic receptors were also compared using rat cortical neurons. The assay optimization was done by varying sensor-test cell ratio, using phosphodiesterase inhibitors and testing cell-cell contact requirement.Conclusions: Here we present CANDLES assay based on co-culturing test cells with cAMP-detecting sensor cells. This co-culture setup allows kinetic measurements, eliminates primary cell transfections and reduces variability. A variety of cell types (rat cortical neurons, mouse granulosa cells and established cell lines) and receptors (adrenergic, follicle stimulating hormone and luteinizing hormone/chorionic gonadotropin receptors) were tested for use with CANDLES. The assay is best applied while comparing cAMP generation curves upon different drug treatments to untransfected primary cells.</p

    A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

    Get PDF
    A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp → pp + Z/γ + X, in proton-tagged events from proton–proton collisions at √s = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. odelindependent upper limits on the visible production cross section of pp → pp + Z/γ + X are set

    Measurement of the t(t)over-bar production cross section in the all-jet final state in pp collisions at √s=7 TeV

    Get PDF
    This article is the pre-print version of the final published paper that is available from the link below.A measurement is presented of the tt production cross section (σtt) in protonproton collisions at a centre-of-mass energy of 7TeV, in the all-jet final state that contains at least six jets, two of which are tagged as originating from b quarks. The data correspond to an integrated luminosity of 3.54 fb-1, collected with the CMS detector at the LHC. The cross section is determined through an unbinned maximum likelihood fit of background and tt signal to the reconstructed mass spectrum of tt candidates in the data, in which events are subjected to a kinematic fit assuming a tt → W+bW-b → 6 jets hypothesis. The measurement yields σtt = 139±10 (stat.) ±26 (syst.) ±3 (lum.) pb, a result consistent with those obtained in other tt decay channels, as well as with predictions of the standard model

    Search for Nonresonant Pair Production of Highly Energetic Higgs Bosons Decaying to Bottom Quarks

    No full text
    International audienceA search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values

    Measurement of the inclusive W and Z production cross sections in pp collisions at s =\sqrt{s}\ = 7 TeV with the CMS experiment

    Get PDF
    This is the Pre-Print version of the Article - Copyright @ 2011 Springer VerlagMeasurements of inclusive W and Z boson production cross sections in pp collisions at sqrt(s)=7 TeV are presented, based on 2.9 inverse picobarns of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give sigma(pp to WX) times B(W to muon or electron + neutrino) = 9.95 \pm 0.07(stat.) \pm 0.28(syst.) \pm 1.09(lumi.) nb and sigma(pp to ZX) times B(Z to oppositely charged muon or electron pairs) = 0.931 \pm 0.026(stat.) \pm 0.023(syst.) \pm 0.102(lumi.) nb. Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recent parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reported
    corecore