429 research outputs found

    Duration of Exposure to Suboptimal Atmospheric Moisture Affects Nymphal Blacklegged Tick Survival

    Get PDF
    The biological processes affecting Ixodes scapularis Say survival are complex. Understanding these processes will be beneficial for predicting tick distribution and population dynamics. This research shows that the duration for which nymphal ticks are exposed to drying air is an important factor for their survival. Experimental analysis of variance results show that duration of exposure to dry air (duration) is as important as vapor pressure deficit (relative humidity) (duration, relative humidity, P \u3c 0.0001). Ticks do not survive when exposed to dry air for long periods; however, the return of humid air within 4–8 h has as large a positive impact on tick survival, as does constant humid air. This experiment exposes nymphal ticks to conditions of suboptimal humidity for different durations and then returns them to saturated conditions that are more typical of daily relative humidity fluctuations experienced during summer in southern New England forests

    The effects of bioactive akermanite on physiochemical, drug-delivery, and biological properties of poly(lactide-co-glycolide) beads

    Get PDF
    Poly(lactide-co-glycolide) (PLGA) beads have been widely studied as a potential drug/protein carrier. The main shortcomings of PLGA beads are that they lack bioactivity and controllable drug-delivery ability, and their acidic degradation by-products can lead to pH decrease in the vicinity of the implants. Akermanite (AK) (Ca(2) MgSi(2) O(7) ) is a novel bioactive ceramic which has shown excellent bioactivity and degradation in vivo. This study aimed to incorporate AK to PLGA beads to improve the physiochemical, drug-delivery, and biological properties of PLGA beads. The microstructure of beads was characterized by SEM. The effect of AK incorporating into PLGA beads on the mechanical strength, apatite-formation ability, the loading and release of BSA, and the proliferation, and differentiation of bone marrow stromal cells (BMSCs) was investigated. The results showed that the incorporation of AK into PLGA beads altered the anisotropic microporous structure into homogenous one and improved their compressive strength and apatite-formation ability in simulated body fluids (SBF). AK neutralized the acidic products from PLGA beads, leading to stable pH value of 7.4 in biological environment. AK led to a sustainable and controllable release of bovine serum albumin (BSA) in PLGA beads. The incorporation of AK into PLGA beads enhanced the proliferation and alkaline phosphatase activity of BMSCs. This study implies that the incorporation of AK into PLGA beads is a promising method to enhance their physiochemical and biological property. AK/PLGA composite beads are a potential bioactive drug-delivery system for bone tissue repair

    Perspective on the Multiple Pathways to Changing Brain States

    Get PDF
    In this review article, we highlight several disparate ideas that are linked to changes in brain state (i.e., sleep to arousal, Down to Up, synchronized to de-synchronized). In any discussion of the brain state, we propose that the cortical pyramidal neuron has a central position. EEG recordings, which typically assess brain state, predominantly reflect the activity of cortical pyramidal neurons. This means that the dominant rhythmic activity that characterizes a particular brain state ultimately has to manifest globally across the pyramidal neuron population. During state transitions, it is the long-range connectivity of these neurons that broadcast the resultant changes in activity to many subcortical targets. Structures like the thalamus, brainstem/hypothalamic neuromodulatory systems, and respiratory systems can also strongly influence brain state, and for many decades we have been uncovering bidirectional pathways that link these structures to state changes in the cerebral cortex. More recently, movement and active behaviors have emerged as powerful drivers of state changes. Each of these systems involve different circuits distributed across the brain. Yet, for a system-wide change in brain state, there must be a collaboration between these circuits that reflects and perhaps triggers the transition between brain states. As we expand our understanding of how brain state changes, our current challenge is to understand how these diverse sets of circuits and pathways interact to produce the changes observed in cortical pyramidal neurons

    Biocompatibility of a self-assembled crosslinkable hyaluronic acid nanogel

    Get PDF
    Hyaluronic acid nanogel (HyA-AT) is a redox sensitive crosslinkable nanogel, obtained through the conjugation of a thiolated hydrophobic molecule to the hyaluronic acid chain. Engineered nanogel was studied for its biocompatibility, including immunocompatibility and hemocompatability. The nanogel did not compromise the metabolic activity or cellular membrane integrity of 3T3, microvascular endothelial cells, and RAW 264.7 cell lines, as determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase release assays. Also, we didn't observe any apoptotic effect on these cell lines through the Annexin V-FITC test. Furthermore, the nanogel cell internalization was analyzed using murine bone marrow derived macrophages, and the in vivo and ex vivo biodistribution of the Cy5.5 labeled nanogel was monitored using a non-invasive near-infrared fluorescence imaging system. The HyA-AT nanogel exhibits fairly a long half-live in the blood stream, thus showing potential for drug delivery applications.The authors thank the FCT Strategic Project of UID/BIO/04469/2013 unit, the project RECI/ BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the Project “BioHealth – Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124- FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. The authors would like to acknowledge also the support of FCT for the PhD grant reference SFRH/BD/61516/2009. They would also like to thank Bioimaging department on Molecular Medicine Institute (IMM) in Lisbon, namely Dr José Rino and Dr António Temudo. Also thank the animal facilities in IMM (Lisbon), specially Dr. Dolores Bonaparte and Dr. Joana Marques. Finally, the authors thank Dr Africa Gonzalez and Mercedes Pelletero the performance of the studies on the activation of complement

    Comparison of Fecal Collection Methods for Microbiome and Metabolomics Studies

    Get PDF
    Background: Integrated microbiome and metabolomics analyses hold the potential to reveal interactions between host and microbiota in relation to disease risks. However, there are few studies evaluating how field methods influence fecal microbiome characterization and metabolomics profiling.Methods: Five fecal collection methods [immediate freezing at −20°C without preservative, OMNIgene GUT, 95% ethanol, RNAlater, and Flinders Technology Associates (FTA) cards] were used to collect 40 fecal samples from eight healthy volunteers. We performed gut microbiota 16S rRNA sequencing, untargeted metabolomics profiling, and targeted metabolomics focusing on short chained fatty acids (SCFAs). Metrics included α-diversity and β-diversity as well as distributions of predominant phyla. To evaluate the concordance with the “gold standard” immediate freezing, the intraclass correlation coefficients (ICCs) for alternate fecal collection systems were calculated. Correlations between SCFAs and gut microbiota were also examined.Results: The FTA cards had the highest ICCs compared to the immediate freezing method for α-diversity indices (ICCs = 0.96, 0.96, 0.76 for Shannon index, Simpson's Index, Chao-1 Index, respectively), followed by OMNIgene GUT, RNAlater, and 95% ethanol. High ICCs (all >0.88) were observed for all methods for the β-diversity metric. For untargeted metabolomics, in comparison to immediate freezing which detected 621 metabolites at ≥75% detectability level, 95% ethanol showed the largest overlapping set of metabolites (n = 430; 69.2%), followed by FTA cards (n = 330; 53.1%) and OMNIgene GUT (n = 213; 34.3%). Both OMNIgene GUT (ICCs = 0.82, 0.93, 0.64) and FTA cards (ICCs = 0.87, 0.85, 0.54) had acceptable ICCs for the top three predominant SCFAs (butyric acid, propionic acid and acetic acid). Nominally significant correlations between bacterial genera and SCFAs (P < 0.05) were observed in fecal samples collected by different methods. Of note, a high correlation between the genus Blautia (known butyrate producer) and butyric acid was observed for both immediate freezing (r = 0.83) and FTA cards (r = 0.74).Conclusions: Four alternative fecal collection methods are generally comparable with immediate freezing, but there are differences in certain measures of the gut microbiome and fecal metabolome across methods. Choice of method depends on the research interests, simplicity of fecal collection procedures and ease of transportation to the lab, especially for large epidemiological studies

    Evaluation of ion exchange processes in drug-eluting embolization beads by use of an improved flow-through elution method.

    Get PDF
    n improved method for evaluating drug release behaviour of drug-eluting embolization beads (DEBs) was developed utilizing an open-loop flow-through system, in which the beads were packed into an occlusive mass within the system and extracted with a flowing elution medium over time. Glass beads were introduced into the beads mass in order to ensure laminar flow, reduce dead volume and improve reproducibility by compensating for swelling phenomena. The effects of glass bead ratio, elution medium flow rate and ion concentration, DEB size and drug concentration and drug type (doxorubicin and irinotecan) were evaluated using DEB composed of a sulfonate-modified polyvinyl alcohol hydrogel (DC Bead™) as the test article. The rate and amount of drug elution from the packed beads was affected by flow rate, the bead size and initial loading dose. The raw data from the concentration profile analysis provided valuable information to reveal the drug elution behaviour akin to the pharmacokinetic data observed for embolized beads (yielding in vitro Cmax and tmax data) which was complementary to the normal cumulative data obtained. A good correlation with historical reported in vivo data validated the usefulness of the method for predicting in vivo drug elution behaviour

    Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes

    Get PDF
    Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. From the Clinical Editor: Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting.L.P., A.G.T., L.K., G.S. and U.K. thank Brunel University London for strategic Infrastructure funding. H.A.K. acknowledges the Deanship of Scientific Research at King Saud University for funding via Group No. RGP-009

    Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers

    Get PDF
    Nanometric biocompatible Metal-Organic Frameworks (nanoMOFs) are promising candidates for drug delivery. Up to now, most studies have targeted the intravenous route, related to pain and severe complications; whereas nanoMOFs for oral administration, a commonly used non-invasive and simpler route, remains however unexplored. We propose here the biofriendly preparation of a suitable oral nanocarrier based on the benchmarked biocompatible mesoporous iron(III) trimesate nanoparticles coated with the bioadhesive polysaccharide chitosan (CS). This method does not hamper the textural/ structural properties and the sorption/release abilities of the nanoMOFs upon surface engineering. The interaction between the CS and the nanoparticles has been characterized through a combination of high resolution soft X-ray absorption and computing simulation, while the positive impact of the coating on the colloidal and chemical stability under oral simulated conditions is here demonstrated. Finally, the intestinal barrier bypass capability and biocompatibility of CS-coated nanoMOF have been assessed in vitro, leading to an increased intestinal permeability with respect to the noncoated material, maintaining an optimal biocompatibility. In conclusion, the preservation of the interesting physicochemical features of the CS-coated nanoMOF and their adapted colloidal stability and progressive biodegradation, together with their improved intestinal barrier bypass, make these nanoparticles a promising oral nanocarrier
    corecore