133 research outputs found

    Sensitivity of carbon cycling in the European Alps to changes of climate and land cover

    Get PDF
    Assessments of the impacts of global change on carbon stocks in mountain regions have received little attention to date, in spite of the considerable role of these areas for the global carbon cycle. We used the regional hydro-ecological simulation system RHESSys in five case study catchments from different climatic zones in the European Alps to investigate the behavior of the carbon cycle under changing climatic and land cover conditions derived from the SRES scenarios of the IPCC. The focus of this study was on analyzing the differences in carbon cycling across various climatic zones of the Alps, and to explore the differences between the impacts of various SRES scenarios (A1FI, A2, B1, B2), and between several global circulation models (GCMs, i.e., HadCM3, CGCM2, CSIRO2, PCM). The simulation results indicate that the warming trend generally enhances carbon sequestration in these catchments over the first half of the twenty-first century, particularly in forests just below treeline. Thereafter, forests at low elevations increasingly release carbon as a consequence of the changed balance between growth and respiration processes, resulting in a net carbon source at the catchment scale. Land cover changes have a strong modifying effect on these climate-induced patterns. While the simulated temporal pattern of carbon cycling is qualitatively similar across the five catchments, quantitative differences exist due to the regional differences of the climate and land cover scenarios, with land cover exerting a stronger influence. The differences in the simulations with scenarios derived from several GCMs under one SRES scenario are of the same magnitude as the differences between various SRES scenarios derived from one single GCM, suggesting that the uncertainty in climate model projections needs to be narrowed before accurate impact assessments under the various SRES scenarios can be made at the local to regional scale. We conclude that the carbon balance of the European Alps is likely to shift strongly in the future, driven mainly by land cover changes, but also by changes of the climate. We recommend that assessments of carbon cycling at regional to continental scales should make sure to adequately include sub-regional differences of changes in climate and land cover, particularly in areas with a complex topograph

    An Online Parenting Program Grows Digital Parenting Skills and Parent–School Connection

    Get PDF
    The eParenting: High-Tech Kids program addresses the positive role technology can play in parenting 9- to 14-year-olds. Delivered via middle schools\u27 parent email lists, the program comprises 56 posts (articles) related to positive uses of digital media/technology in parenting preteens and teens. In 2016 alone, nearly 35,000 Wisconsin families, representing 24 counties and 77 schools, were reached. Self-report parent feedback, collected over 3 years, indicated increased understanding of how to use digital media as a parenting tool, more positive views on using digital media in parenting, and increased conversations with children about digital media. Schools also valued the resulting improved connection with parents

    Analyzing the carbon dynamics of central European forests: comparison of Biome-BGC simulations with measurements

    Get PDF
    Biogeochemical models are often used for making projections of future carbon dynamics under scenarios of global change. The aim of this study was to assess the accuracy of the process-based biogeochemical model Biome-BGC for application in central European forests from the lowlands to upper treeline as a pre-requisite for environmental impact assessments. We analyzed model behavior along an altitudinal gradient across the alpine treeline, which provided insights on the sensitivity of simulated average carbon pools to changes in environmental factors. A second set of tests included medium-term (30years) simulations of carbon fluxes, and a third set of tests focused on daily carbon and water fluxes. Model results were compared to aboveground biomass measurements, leaf area index recordings as well as net ecosystem exchange (NEE) and actual evapotranspiration (AET) measurements. The simulated medium-term forest growth agreed well with measured data. Also daily NEE fluxes were simulated adequately in most cases. Problems were detected when simulating ecosystems close to the upper timberline (overestimation of measured growth and pool sizes), and when simulating daily AET fluxes (overestimation of measured fluxes). The results showed that future applications of Biome-BGC could benefit much from an improvement of model algorithms (e.g., the Q10 model for respiration) as well as from a detailed analysis of the ecological significance of crucial parameters (e.g., the canopy water interception coefficient

    Belehrung für die Studirenden der technischen Hochschule

    Get PDF

    STANDARDIZING THE TECHNICAL AND STRUCTURAL SPECIFICATION OF DOORS IN TUNNELS

    Get PDF
    ABSTRACT In the past few years the technical and safety needs for railway tunnel systems designed for a cross travel speed of more than 160 km/h caused a steady increase of tunnel facilities. In addition to the structural engineering experience required, a more sophisticated approach of planning the highly complex tunnel equipment is needed. This also to comply with the permanent on-going change in the legal framework. Experience in the operation has shown that due to the high complexity the tunnel facilities not always work in the way expected (e.g. failure indication) and that facilities in tunnels are often not designed in consideration with other interacting facilities (e.g. tunnel doors and tunnel ventilation). It becomes apparent, that in the future an integrated design of the tunnel facilities is mandatory. This to take part already in the design phase of a tunnel. Various issues with doors in recently opened tunnel-systems forced an evaluation, that subsequently led to a review of the specifications of tunnel facilities, especially doors

    Influence of climatic variables on crown condition in pine forests of Northern Spain

    Get PDF
    Producción CientíficaThe aim of this study was to find relationships between crown condition and some climatic parameters to identify which are those having a main influence on crown condition, and how this influence is shown in the tree (crown transparency), and to contribute to the understanding of how these parameters will affect under future climate change scenarios

    Temporal Coherence of Photons Emitted by Single Nitrogen-Vacancy Defect Centers in Diamond Using Optical Rabi-Oscillations

    Get PDF
    Photon interference among distant quantum emitters is a promising method to generate large scale quantum networks. Interference is best achieved when photons show long coherence times. For the nitrogen-vacancy defect center in diamond we measure the coherence times of photons via optically induced Rabi oscillations. Experiments reveal a close to Fourier-transform (i.e., lifetime) limited width of photons emitted even when averaged over minutes. The projected contrast of two-photon interference (0.8) is high enough to envisage applications in quantum information processing. We report 12 and 7.8 ns excited state lifetimes depending on the spin state of the defect.4 page(s

    Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters!

    Get PDF
    Assessing the potential future of current forest stands is a key to design conservation strategies and understanding potential future impacts to ecosystem service supplies. This is particularly true in the Mediterranean basin, where important future climatic changes are expected. Here, we assess and compare two commonly used modeling approaches (niche- and process-based models) to project the future of current stands of three forest species with contrasting distributions, using regionalized climate for continental Spain. Results highlight variability in model ability to estimate current distributions, and the inherent large uncertainty involved in making projections into the future. CO2 fertilization through projected increased atmospheric CO2 concentrations is shown to increase forest productivity in the mechanistic process-based model (despite increased drought stress) by up to three times that of the non-CO2 fertilization scenario by the period 2050-2080, which is in stark contrast to projections of reduced habitat suitability from the niche-based models by the same period. This highlights the importance of introducing aspects of plant biogeochemistry into current niche-based models for a realistic projection of future species distributions. We conclude that the future of current Mediterranean forest stands is highly uncertain and suggest that a new synergy between niche- and process-based models is urgently needed in order to improve our predictive ability
    corecore