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Abstract

Assessing the potential future of current forest stands is a key to design conservation strategies and understanding

potential future impacts to ecosystem service supplies. This is particularly true in the Mediterranean basin, where

important future climatic changes are expected. Here, we assess and compare two commonly used modeling

approaches (niche- and process-based models) to project the future of current stands of three forest species with

contrasting distributions, using regionalized climate for continental Spain. Results highlight variability in model

ability to estimate current distributions, and the inherent large uncertainty involved in making projections into the

future. CO2 fertilization through projected increased atmospheric CO2 concentrations is shown to increase forest

productivity in the mechanistic process-based model (despite increased drought stress) by up to three times that of the

non-CO2 fertilization scenario by the period 2050–2080, which is in stark contrast to projections of reduced habitat

suitability from the niche-based models by the same period. This highlights the importance of introducing aspects of

plant biogeochemistry into current niche-based models for a realistic projection of future species distributions. We

conclude that the future of current Mediterranean forest stands is highly uncertain and suggest that a new synergy

between niche- and process-based models is urgently needed in order to improve our predictive ability.
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Introduction

Detailed knowledge of species’ ecological and geo-

graphic distributions is fundamental for conservation

planning and forecasting (Ferrier, 2002; Funk &

Richardson, 2002; Rushton et al., 2004), for understand-

ing ecological and evolutionary determinants of the

spatial patterns of biodiversity (Ricklefs, 2004), and

the potential response of these distributions to future

climatic change (e.g. Thomas et al., 2004; Araújo et al.,

2005a, b; Thuiller et al., 2005). This is of particular

importance in the Mediterranean region, which has a

high diversity of environments and harbors Europe’s

greatest diversity of vegetation and fauna (Cowling

et al., 1996). This region is not only a biodiversity hot-

spot (Underwood et al., 2009), it has also been identified

as a climatic change hotspot (Giorgi, 2006) because (1)

climate projections consistently project significant in-

creases in temperature, and decreases in precipitation in

the Mediterranean basin (Gibelin & Deque, 2003; Giorgi

et al., 2004) and (2) such potential change may have a

large effect on current Mediterranean forests and the

related ecosystem service supply (Schröter et al., 2005).

Models are the most feasible and efficient way to

assess spatial biodiversity and responses to climatic

drivers over large spatial and temporal scales (Thuiller,

2007). Species-specific models fall broadly into two

categories: empirical niche-based or habitat models

and process-based models (see Kearney, 2006). These

contrasting methodologies, however, often give conflict-

ing results (Thuiller et al., 2008).

Also known as ecological species distribution models,

bioclimatic envelopes, or habitat models, niche-based
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models are by far the most commonly used method for

predicting species geo-climatic distributions. Such

models typically use a variety of correlative methods

to provide detailed predictions of distributions by relat-

ing presence or abundance of species to gradients of

observed environmental predictors. As such, niche-

based models are used extensively and have provided

researchers with an innovative tool to explore diverse

questions in ecology and conservation (see Peterson,

2007). In particular, it has become common to use such

models to assess potential distribution responses to

future climate scenarios (e.g., Bakkenes et al., 2002;

Araújo et al., 2004; Skov & Svenning, 2004; Thomas

et al., 2004; Thuiller et al., 2005; Gomez-Mendoza &

Arriaga, 2007; Thuiller, 2010), using sophisticated inter-

polation of climate data (e.g., Hijmans et al., 2005). One

of the main advantages of niche-based models is their

relative simplicity, making it straightforward to develop

species-specific models, which make use of the large

data sets available (e.g., Forest inventories, regionalized

climate).

For terrestrial vegetation, the term ‘process-based

model’ incorporates a broad range of methodologies

for describing eco-physiological processes, from purely

empirical relationships to mechanistic descriptions

based on physical laws. Various types of process-based

models are used and under development, such as gap

models (Pacala et al., 1993; Bugmann, 2001), landscape

models (Lischke et al., 2006; Scheller & Mladenoff, 2007),

fitness-based models (Chuine & Beaubien, 2001), or

sophisticated ‘hybrid’ dynamic vegetation models

(e.g., Sitch et al., 2008), which focus on achieving a

balance between realism, accuracy and complexity.

The suite of available models represents a range from

very detailed species-specific models which describe

stand structure and hourly plant physiological pro-

cesses (i.e. coupled photosynthesis, respiration, and

water balance), to general models based on fitness

probability matrices. A process-based model can poten-

tially allow for the highlighting of processes involved in

range shifts or extinction. To date, various process-

based approaches have been developed for predicting

species distributions (see Jeltsch et al., 2008 for a re-

view). These have been explicitly empirical, and link

simple indexes of survival and reproduction with im-

pacts of frost, drought, and windthrow to produce a

presence–absence indicator. The use of these empirical

models to make predictions of species range shifts is

rare for species ranges at the regional scale (Hijmans &

Graham, 2006; Jeltsch et al., 2008).

Many mechanistic process-based model studies, sup-

ported by experimental campaigns such as the FACE

project (Ainsworth & Long, 2005; Ainsworth & Rogers,

2007), as well as growth and yield surveys, suggest that

global warming will have a positive impact on forest

productivity (van der Meer et al., 2002; Nigh et al., 2004;

Norby & Luo, 2004; Briceño-Elizondo et al., 2006; Gau-

charel et al., 2008), due to the direct fertilization effect of

increased CO2 and indirect effects such as lengthening

of the growing period [but see contrary examples such

as Zierl & Bugmann (2007)]. Results vary among ex-

perimental systems, especially when considering po-

tential acclimation (Körner, 2006) and nutrient

limitation (Zaehle et al., 2010), and remain the focus of

much study. On the other hand, results from statistical

niche-based models are supported by a growing body

of ecological literature that suggests that the narrow

climatic adaptation of many tree species may lead to

many populations being poorly suited to their environ-

ment, resulting in large alteration to potential distribu-

tions towards the end of the 21st Century (Davis &

Shaw, 2001; Iverson & Prasad, 2001; Thomas et al., 2004;

St Clair & Howe, 2007; Benito-Garzon et al., 2008).

Within studies, different modeling methods yield

highly divergent predictions, even when spatial assess-

ments of model accuracy appear excellent (Araújo et al.,

2005a, b; Kharouba et al., 2009).

It is of great importance to develop several methods

independently and to compare (for the same species

and under the same scenarios) their predictions in order

to identify both robust results and model inadequacies

(Beaumont et al., 2007). Such cross comparisons may

provide information on which policy makers and sta-

keholders can rely. Yet, despite the uncertainty gener-

ated by contrasting experimental results, the variety of

modeling approaches available (Jeltsch et al., 2008), and

studies that have highlighted differences between

niche-based modeling approaches (Elith et al., 2006;

Hijmans & Graham, 2006), niche-based model predic-

tions are rarely compared against other modeling ap-

proaches. Of particular relevance to this study, the

models used in previous comparisons (e.g., Hijmans

& Graham, 2006; Jeltsch et al., 2008; Coops et al., 2009;

Morin & Thuiller, 2009) have not described the indirect

effect of CO2 driven forest productivity on the suitabil-

ity of a site (but see Rickebusch et al., 2008).

This paper has three purposes. First, we consider the

effectiveness of an empirically derived multi-niche-

based model ensemble, applying the BIOMOD-R package

(Thuiller et al., 2009) with regionalized present-day

(1950–1998) climate, to predict the distributions of three

forest species in continental Spain. These species are

presently distributed along a gradient from drier (Pinus

halepensis), to mesic (Quercus ilex) and moister condi-

tions (P. sylvestris). Second, we assess potential future

climate driven changes in current forest stands using

both the niche-based approach and a mechanistic pro-

cess-based forest growth model (GOTILWA 1 ). Third,
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we use the process-based simulations of projected fu-

ture forest productivity (with and without CO2 fertili-

zation) to identify possible processes responsible for the

large differences observed in future projections from the

two modeling approaches. We then suggest possible

means by which to improve future model efforts.

Materials and methods

Selected region and study species

We focused on the region of continental Spain, which contains

a large altitudinal gradient (sea level to 3500 m) and a mosaic

of different climates (from semiarid climates to Mediterranean

and humid Atlantic climates). The Third Spanish National

Forest Inventory (Ministerio de Agricultura PyA, 2007) sur-

veyed the forested surface of the Spanish Iberian Peninsula

(492 173 km2) with an approximate density of 1 plot km2. Each

of the resulting 89 365 circular plots was located in the field by

giving its Universal Transverse Mercator (UTM 30N) coordi-

nates. We extracted the presence/absence data for three spe-

cies with distinct topoclimatic distributions: two tree species

(Q. ilex, P. halepensis) commonly found in Mediterranean

forests of the study region, and one species (P. sylvestris) which

is found at the most southern limits of its distribution (Fig. 1).

Climatic data

From 1900 to 2000, a reconstructed climatic data time series

based on the CRU05 (1901–2000) monthly data set (New et al.,

1999) was used, with global atmospheric concentrations of

CO2 from 1901 to 2000 obtained from the Carbon Cycle Model

Linkage Project (McGuire et al., 2001).

We applied the climatic projection for period 2001–2100

generated by the HadCM3 global circulation model using

the A1 scenario (IPCC WGI, 2007) as an indicator for the effect

of possible future climate change on species distributions and

productivity. The HadCM3 model with the A1 scenario uses

an estimated increase in atmospheric CO2 to 810 ppm by 2080,

with an associated increase in temperature of 3.1 1C by 2080 for

the area included in this study (in comparison with the

average temperatures for the 1960–1990 period), and a slight

decrease in precipitation.

The present-day regionalization was created by GIS model-

ing from ground data (1950–1998; 1068 thermometric and 1999

pluviometric meteorological stations) from the Spanish weath-

er monitoring system (National Weather Institute; http://

www.aemet.es). The regionalization method chosen was mul-

tiple regression with residual correction (spatially interpolated

using inverse distance weighting in the case of mean tempera-

tures or splines in the case of precipitation). The climate

predictors were altitude, latitude, continentality (linear or

quadratic distances to Mediterranean, Atlantic and Cantabric

coasts) and potential global solar radiation; all of them derived

from a DEM (Digital Elevation Model). A holdout crossvalida-

tion, using a fitting set (60%) and a testing set (40%), was

applied to compute the RMSE for the monthly data (between

0.8 and 1.6 1C in the case of temperature and between 6 and

20 mm in the case of precipitation). See Ninyerola et al.

(2007a, b) for more details on the methodology used. The

resulting maps have a 200 m spatial resolution, although in

this study we have generalized the matrix into a 1 km grid for

computational purposes.

Future regionalized climate was obtained using an approx-

imation based on differences between the past climate (CRU)

and the climate projection from the HADCM3 model using the

A1 storyline, thus combining the predictive information of the

GCM with the topoclimatic data provided by ground stations.

Niche-based models

We performed the projections using nine different and widely

used niche-based modeling techniques, within the BIOMOD

computational framework (Thuiller, 2003; Thuiller et al., 2009),

as outlined in Table 1.

All models used in this study need information about

presences and absences to be able to determine suitable con-

ditions for a given species. Pseudo-absences were randomly

selected from stands at least 10 km distant to a presence where

the target species was not recorded in the Forest Inventory. The

number of pseudo-absences and presences were equaled in

order to keep prevalence constant. A holdout crossvalidation

Fig. 1 Distribution of presence records from the Third Spanish National Inventory for (a) Quercus ilex, (b) Pinus halepensis, and

(c) P. sylvestris.

P R E D I C T I N G T H E F U T U R E O F F O R E S T S U N D E R C L I M AT E C H A N G E 567

r 2010 Blackwell Publishing Ltd, Global Change Biology, 17, 565–579

http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es
http://www.aemet.es


has been used to evaluate the models: 80% of the presence–

absence stands have been labeled as the training set and the

remaining 20% as the testing set. The number of model

evaluation runs was set to three with a repetition of two

pseudo-absence combinations on each run, resulting in a total

number of six evaluation runs per model.

The models outlined predict suitability values between 0

and 1 at each site. We applied a binary transformation (absence

or presence, 0 or 1) by assigning a threshold from which we

can consider a species present or absent, using the True Skill

Statistic (TSS). This threshold represents the optimum correct

classification of both presences and absences within the eva-

luation data. However, the accuracy of each model was

calculated using both the AUC [area under the curve, from

receiver operating characteristics curve (Swets, 1988)] and TSS

(Allouche et al., 2006).

To constrain model uncertainty, averaging of model predic-

tions (giving the same weight to all predictions) can be

implemented to derive a consensus prediction; an alternative

is to combine models using some form of weighting (e.g. using

PCA score value, Thuiller et al., 2003; Araújo &Guisan, 2006).

There is a wide range of approaches to do this (see Araújo &

New, 2007 for a review). In this study, each model is given a

weight in the ensemble of forecasts depending on their pre-

dictive accuracy using TSS. A decay factor of 1.6 in weights is

set; that is, models are ordered in terms of TSS and the weight

of each model in the forecast will be 1.6 times larger than the

following. This procedure (i.e. a form of ‘stacking’) ensures

accuracy-based discrimination between models. Further

information on this procedure may be found in Thuiller et al.

(2009).

Climatic and topographic uncorrelated variables (from

more than 100 raw variables) are used to apply these niche-

based models. For each target species, a different set of

topoclimatic variables is chosen by evaluating the correlation

matrices. Variables were chosen from those commonly shown

to influence tree distribution.

The variables chosen for each species, and their mean

relative importance over all niche-based models were:

� Q. ilex – Summer minimum water availability (11%),

mean winter water availability (31%), minimum of

the mean winter temperature (23%), minimum of

the mean summer temperature (12%), cost–distance

to the sea (15%), slope (7%).

� P. halepensis – Mean spring water availability (40%),

minimum of the mean winter temperature (23%),

cost–distance to the sea (23%), aspect (14%).

� P. sylvestris – Summer minimum water availability

(39%), mean winter water availability (8%),

Table 1 Niche-based models used in this study

Model

no. Abbreviation Method References

1. RF (random forest) A machine-learning method – a combination of tree

predictors such that each tree depends on the

values of a random vector sampled

independently and with the same distribution for

all trees in the forest.

Breiman (2001)

2. CTA (classification tree analysis) A classification method – a 50-fold cross-validation

to select the best trade-off between the number of

leaves of the tree and the explained deviance.

Breiman et al. (1984)

3. GBM (generalized boosting

model)

A machine-learning method – combines a boosting

algorithm and a regression tree algorithm to

construct an ‘ensemble’ of trees.

Ridgeway (1999)

4. MARS (multivariate adaptive

regression splines)

A nonparametric regression method, mixing CTA

and GAM.

Friedman (1991)

5. GAM (generalized additive

model)

A regression method, with 4 degrees of freedom and

a stepwise procedure to select the most

parsimonious model.

Hastie & Tibshirani (1990)

6. MDA (mixture discriminant

analysis)

A classification method – based on mixture models. Hastie & Tibshirani (1990)

7. GLM (generalized linear model) A regression method, with polynomial terms for

which a stepwise procedure is used to select the

most significant variables.

McCullagh & Nelder (1989)

8. ANN (artificial neural networks) A machine-learning method, with the mean of three

runs used to provide predictions and projections.

Ripley (1996)

9. SER (surface range envelope) A simple rectilinear envelope, that takes into account

the whole range of conditions in which the

species is present.

Busby (1991)
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minimum of the mean winter temperature (35%),

cost–distance to the sea (6%), slope (11%).

The relative importance of each variable is calculated based on

the correlation between standard prediction and the prediction

with a randomized variable, therefore estimating the influence

of the randomized variable in the modeling (see Thuiller et al.,

2009 for further details).

Ecosystem model GOTILWA 1

GOTILWA 1 (Growth Of Trees Is Limited by WAter), (Keenan

et al., 2008, 2009a, b, c, 2010; http://www.creaf.uab.es/GOTIL

WA+) is a process-based terrestrial biogeochemical model of

forest growth that has been developed in the Mediterranean

region to explore how forests are influenced by water stress,

tree stand structure, management techniques, soil properties,

and climate (including CO2) change.

GOTILWA 1 does not predict the distribution of a species,

but simulates tree growth, and the associated carbon and

water fluxes for different tree species in different environ-

ments, thus reflecting a site-species specific ecophysiological

suitability. The model treats monospecific stands, which can be

even or uneven-aged. Individual trees are aggregated into 50

dbh (diameter at breast height) classes and calculations are

performed for each class. Hourly ecosystem carbon and water

fluxes are estimated using meteorological forcing. No biocli-

matic limits are set in GOTILWA 1 , and indeed indirect

bioclimatic limits can only be considered through the direct

effect of climate on the physiological processes of the forest.

The GOTILWA 1 model includes a two-leaf canopy photo-

synthetic submodel (Wang & Leuning, 1998; Dai et al., 2004).

The photosynthesis submodel treats the C3 photosynthetic

pathway. The canopy is divided into sunlit and shaded leaves,

with the amount of intercepted diffuse and direct radiation

depending on the time of the day, season, and the area of leaf

exposed to the sun (Campbell, 1986). Foliage net assimilation

rates are calculated using the Farquhar et al. (1980) photo-

synthesis model, with dependencies on intercepted quantum

flux density, species-specific photosynthetic capacities, leaf

temperature, and leaf intercellular CO2 concentration. Stoma-

tal conductance is calculated using the Leuning et al. model

(Leuning et al., 1995) that is the advancement of the Ball et al.

(1987) model. Net photosynthesis is scaled from the leaf to the

canopy through the canopy microclimate model, to give

canopy bulk gross primary production (GPP). Net primary

production (NPP) is calculated as the balance of GPP less

autotrophic respiration components and is defined as

NPP 5A 1 Rf 1 Rw 1 Rr, where A is the net assimilation rate

per unit ground ( 5 GPP�daytime leaf respiration), Rf is night

respiration rate per ground unit area, Rw is respiration of

nonleaf aerial plant tissues, Rr is respiration of root tissues.

Model parameters were set to species-specific values (as in

Gracia et al., 1999; Kramer et al., 2002; Morales et al., 2005;

Keenan et al., 2009a). Each tree cohort is represented with three

carbon compartments: leaf, sapwood, and fine roots. Available

mobile carbon is allocated to each, and maintenance respira-

tion of each compartment is calculated as a function of

temperature.

Water stress affects the photosynthesis–conductance cou-

pling by directly reducing the photosynthetic potential

through a nonlinear relation to soil water content (Keenan

et al., 2009a). Phenology is temperature-dependent and ac-

counted for in an updated version of the Pelkonen & Hari

(1980) approach for calculating the seasonal variations in

photosynthetic potential. GOTILWA 1 has been validated

and widely applied both in the Mediterranean region and

the rest of Europe (see Kramer et al., 2002; Morales et al., 2005;

Keenan et al., 2009a for validation exercises and Keenan et al.,

2009b, c, 2010 for example applications).

Experimental setup

The niche-based model ensemble was used to calculate the per

model suitability for each recorded stand (1 km2 scale) for the

two periods 1950–1998 and 2050–2080. A weighted mean

model ensemble suitability was then calculated for each per-

iod. For GOTILWA 1 , simulations were run for each dominant

occurrence of the three studied species for the period 1930–

2100. Two experiments were considered for the GOTILWA 1

model: (1) with increasing CO2 concentrations as prescribed by

the A1 climate scenario, (2) with CO2 concentrations fixed

constant at post 2000 levels from 2000 to 2100. We used

modeled values of NPP as a pseudo-proxy for suitability,

given that it reflects direct changes in temperature and soil

water availability, and as well as more complex indirect effects

of changes in phenological events, labile carbon pools, stand

biomass and the associated maintenance, growth and turn-

over. Long- and short-term changes in NPP therefore can be

used as a simple representation of the ‘health’ of a forest stand

and may be correlated to changes in suitability values for a

given species.

Results

We first assessed consistency in niche-based model predictions

by measuring agreement between modeled present-day dis-

tributions and known presence and pseudo-absence of species

(Table 2). The results showed a good predictive ability for

observed distributions, with most mean AUC and TSS values

within ranges of good predictive performance (Allouche et al.,

2006). The Random Forest (RF) model performed consistently

better across species, followed by the classification tree analy-

sis (CTA) and generalized boosting model (GBM) models.

Variability in performance between modeling techniques was

high (Table 2), with mean TSS values varying by up to two

times between models. The TSS statistic proved to be a more

sensitive estimator of model predictive accuracy than the AUC

statistic. In the case of TSS, each species weighted model

ensemble proved to have higher predictive power than simply

taking the average of all models, or even using the best model.

Two distinct groups were observed in the niche-based

models: the first consisting of the three methods GAM,

GLM, and MDA, and the second group comprising of the

three methods MARS, GBM, and CTA. Three methods [artifi-

cial neural networks (ANN), RF, and surface range envelope

(SRE)] with distinct predictions were observed (Fig. 2).

Although the majority of methods show an overall good
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performance of mean TSS across species, they vary in terms of

TSS variance across species. The RF model proved to be the

most stable across species due to its flexibility in contrast with

SRE, a restricted envelope only based on maximum and mini-

mum of the explanatory variables. ANN accounts for the

greatest variance due to its performance for Q. ilex (Table 2).

When predicting responses to climate change, a broad

topoclimatic range of responses were observed (Fig. 3),

although all species showed the same general tendency. Model

ensemble predictions of suitability showed large declines in

suitability for each of the three species between the periods

2050–2080 and 1950–1980. Q. ilex stands were the largest

affected by the applied climate change scenario (Fig. 4), with

40.4% of current stand locations becoming unsuitable by the

period 2050–2080. Although Q. ilex is a typical Mediterranean

species, and relatively drought tolerant, its large topoclimatic

distribution means that it is currently located in some areas

which are predicted to be subject to high levels of climate

change in the future. Thus, areas of its southern most range

were the highest affected. Climate change induced decline of

P. halepensis was not so severe, with the majority of sites

(87.3%) maintaining a level of suitability that would permit

the presence of the species. The multimodel ensemble also

predicted an important decline in the presence of P. sylvestris

(24%), though the species maintained a strong presence in

most mountainous regions (e.g. the Pyrenees Mountains),

resulting in much larger geographical variability than that

observed for the other two species.

Table 2 Assessment of the agreement between modelled and observed distributions for each niche-based model and species, and

the resulting weights used in the multimodel ensemble

Modeling

techniques

Quercus ilex Pinus halepensis Pinus sylvestris

Weight AUC TSS Weight AUC TSS Weight AUC TSS

RF 0.381 0.974 0.845 0.381 0.962 0.805 0.381 0.989 0.911

(0.004) (0.011) (0.006) (0.018) (0.002) (0.012)

CTA 0.238 0.931 0.768 0.238 0.924 0.750 0.220 0.963 0.876

(0.01) (0.02) (0.011) (0.019) (0.008) (0.019)

GBM 0.149 0.947 0.770 0.149 0.954 0.779 0.160 0.984 0.881

(0.006) (0.014) (0.006) (0.013) (0.004) (0.014)

MARS 0.093 0.929 0.714 0.073 0.943 0.750 0.100 0.981 0.881

(0.01) (0.02) (0.005) (0.010) (0.005) (0.012)

GAM 0.031 0.893 0.643 0.078 0.942 0.755 0.055 0.978 0.873

(0.008) (0.012) (0.006) (0.010) (0.004) (0.008)

MDA 0.054 0.890 0.668 0.021 0.901 0.699 0.020 0.871 0.861

(0.012) (0.028) (0.018) (0.024) (0.007) (0.014)

GLM 0.032 0.890 0.645 0.036 0.933 0.737 0.035 0.976 0.867

(0.009) (0.015) (0.007) (0.017) (0.004) (0.006)

ANN 0.010 0.754 0.475 0.016 0.903 0.706 0.021 0.963 0.847

(0.037) (0.048) (0.008) (0.012) (0.016) (0.021)

SRE 0.013 – 0.528 0.009 – 0.436 0.009 – 0.683

(0.015) (0.030) (0.022)

Ensemble forecasting – 0.958 0.961 – 0.969 0.976 – 0.990 0.990

(0.003) (0.003) (0.001) (0.001) (0.486) (0.513)

Statistics given are the area under the curve (AUC) and the true skill statistic (TSS). Values given in brackets are the associated

standard deviations. Accuracy classification for AUC: 14good40.84fair40.74poor; TSS: 14good40.64fair40.44poor (see

BIOMOD Manual).

RF, random forest; CTA, classification tree analysis; GBM, generalized boosting model; MARS, multivariate adaptive regression

splines; GAM, generalized additive model; MDA, mixture discriminant analysis; GLM, generalized linear model; ANN, artificial

neural networks; SRE, surface range envelope.

Fig. 2 Model performance as measured by the true skill statis-

tic (TSS) through the mean, maximum and variance of the TSS.
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Results for estimates of change in current forests under

future climates also demonstrate that the modeling technique

used to define climate envelopes can have a very large impact

on predictions (Table 3). Predictions for each of the three

species (excluding SRE which presents a very low weight)

varied in magnitude of predicted change. For example, for

Q. ilex predicted losses of current habitat ranged from 5.6% to

46.9%. The other two species showed a lower range of model

dependent variability (between 3% and 35%). Between-model

variability across species was also very high, with models

predicting between 17% (MARS model) and 28.3% (CTA

model) loss of current habitat on average over the three species

by the period 2050–2080.

Simulations using the GOTILWA 1 model showed a quite

stable productivity from the three species over the past cen-

tury (Fig. 5), with slight increases in production nearing the

end of the century. When considering potential future climatic

change with no increment in atmospheric CO2 each of the

Fig. 3 Weighted modelled suitability for current presence distribution of each species during the period 1950–1980 and the projected

weighted model suitability for the same forest stands for the period 2050–2080 under the A1fi scenario of the HADCM3 model climate

predications.

Fig. 4 Predicted future of current forests of Quercus ilex, Pinus halepensis, and P. sylvestris in continental Spain, as predicted by the

multimodel ensemble for the period 2050–2080. Future absence relates to current forest stands in locations which are projected to be geo-

climatically unsuitable by the period 2050–2080.

Table 3 Percentage (%) of current forest stands which were predicted to become unsuitable for their current species by the period

2050–2080 according to the different statistical models

ANN CTA GAM GBM GLM MARS MDA RF SRE Mean SD

Quercus ilex 5.65 46.97 21.34 40.06 16.92 29.10 9.66 30.56 88.42 32.08 25.0

Pinus halepensis 18.59 9.50 30.62 18.40 20.51 21.49 27.94 6.60 47.13 22.31 12.0

Pinus sylvestris 34.99 28.39 23.16 15.97 27.94 3.06 29.23 14.34 51.21 25.37 13.7

Mean 19.74 28.29 25.04 24.81 21.79 17.88 22.28 17.17 62.25

SD 14.7 18.7 4.92 13.2 5.6 13.3 10.9 12.2 22.7

The per-species and per-model mean and standard deviation (SD) are also given.

ANN, artificial neural networks; CTA, classification tree analysis; GAM, generalized additive model; GBM, generalized boosting

model; GLM, generalized linear model; MARS, multivariate adaptive regression splines; MDA, mixture discriminant analysis; RF,

random forest; SRE, surface range envelope.
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species was predicted to reduce their production (NPP) on

average by the time period 2050–2080 (Fig. 5). This supports

the results from the niche-based modeling approach, given

that a reduced productivity reflects a reduction in topoclimatic

suitability for these species. However, when considering the

effect of increasing atmospheric CO2 concentrations, simulated

production from each of the three species showed strong

increases in NPP until about 2070. After 2070, the fertilization

effect of increased atmospheric CO2 was observed to plateau,

and species-specific reductions in NPP were observed.

P. halepensis showed the strongest reduction, followed by

Q. ilex. Although NPP rates began to decline by the end of

the 21st century under the CO2 fertilization scenario, they still

maintained higher average rates (if only slightly in the case of

Q. ilex) than those observed during the period 1950–1980.

Large differences were observed between the response of

the species as modeled by GOTILWA 1 and that of the multi-

model ensemble. However, when considering spatially explicit

simulations with a constant CO2, the per-pixel magnitude and

direction of the changes in NPP and in suitability (as predicted

by the multimodel ensemble) between the period 2050–2080

and 1950–1980 were similar for two (Q. ilex, P. sylvestris) of the

three species (Fig. 6). So, less suitability for a pixel (niche-

based) was reflected in less NPP for the same site, if no CO2

effect is taken into account (process-based). On the other hand,

when considering a CO2 increment in the GOTILWA 1 simu-

lations, NPP generally showed an increase. The same per-pixel

spatial trend was maintained, where low suitability was

mirrored by low NPP for Q. ilex and P. sylvestris, but the sign

of the relative change in NPP vs. that of suitability, between the

two focus periods, was different.

The root mean squared error (RMSE) between the two

different modeling approaches increased by a factor of three

between GOTILWA 1 simulations considering atmospheric

CO2 as constant and those considering a CO2 increment. This

indicates that the introduction of CO2 as a driver in the

GOTILWA model lead to a large dissimilarity between the

two modeling approaches. For GOTILWA 1 simulations with

a constant CO2 concentration, the RMSE between the percen-

tage of change in NPP and that of suitability for the two

periods was 0.22, 0.28, and 0.29 for Q. ilex, P. Sylvestris, and

P. halepensis, respectively. The RMSE when considering a CO2

increment was 0.64, 0.73, and 0.83 (data presented in Fig. 6).

Changes in NPP and suitability are not necessarily 1 : 1 corre-

lated, but the RMSE between the estimates gives a measure of

their similarity, and the extent of the relative dissimilarity

introduced by the consideration of the potential effect of CO2

fertilization.

Discussion

We found that the applied niche-based models were

capable of capturing the complex topoclimatic distribu-

tion of the three studied species, and that the use of a

weighted multimodel ensemble improved the indivi-

dual model performance. This adds to the mounting

evidence that environmental conditions strongly influ-

ence species distribution patterns locally and regionally,

as they do world-wide (Hawkins et al., 2003). Indeed,

most of the selected variables were related to water and

energy, which is consistent with the widely documented

trend of plant species to be climatically driven by

Fig. 5 Mean and standard deviation simulated annual net

primary production (NPP, Mg C ha�1 yr�1) for dominant species

forested pixels from 1930 to 2100 using the GOTILWA 1 model,

both with and without a future CO2 increment, for each of the

three species. Solid lines reflect the running average of 15 years.

The upper regression line in each panel refers to simulations

with a CO2 increment, whereas the lower line refers to simula-

tions with no increment in CO2 after the year 2000.
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water–energy dynamics (see e.g., Field et al., 2005 and

references therein).

An important issue regarding niche modeling is the

variability of results when using different modeling

techniques (Thuiller et al., 2003; Araújo et al., 2005a, b;

Pearson et al., 2006). The identification of five distinct

patterns of range prediction from nine models high-

lights the differences between modeling approaches,

while providing a foundation for further investigation

as to which technique, or group of techniques, may be

most appropriate for predicting future ranges but in-

evitably calls for an ensemble forecasting to determine

species distributions (Araújo & New, 2007). The best

performing models are not always the same for differ-

ent species, even if some of them (in particular RF, CTA,

GBM) generally perform better for the species included

in this study. The performance also varied according to

the number of available presence records, corroborating

results of other studies (Elith et al., 2006). Nevertheless,

the use of different niche-based models has been shown

here to be an effective manner by which to quantify the

inherent intermodel variability (Araújo et al., 2005a, b;

Thuiller et al., 2005) and improve model estimates

through ensemble forecast techniques. Process-based

models would also benefit from such an approach,

and future comparison studies should incorporate mul-

tiple process-based models.

All models, considered in any time period, entail

multiple sources of uncertainty (Thuiller et al., 2003;

Guisan & Thuiller, 2005). Many important biological

factors are either often insufficiently described or

omitted in all modeling approaches (see Guisan &

Thuiller, 2005), such as small-scale environmental het-

erogeneity (e.g. microclimates, quantitative properties

of soils), local dispersal (local dispersal leads to intras-

pecific aggregation; Pacala, 1997); biotic interactions

across trophic levels (e.g. dispersal, pollinization; Ara-

újo & Luoto, 2007); and processes that fragment space

and create patchy aggregated distributions (e.g. forest

fire events) (Fahrig, 2003). Perhaps most fundamentally

for projecting possible future scenarios, large uncer-

tainty exists regarding direct impacts of increased con-

centrations of atmospheric CO2 on species physiology

and competitive interactions (e.g. Ainsworth et al.,

2008).

Despite their broad use, uncertainties about niche-

based model predictions remain high (Hampe, 2004;

Heikkinen et al., 2006; Randin et al., 2006). To date, the

main drawback of niche-based models is their inability

to consider important relationships such as biotic inter-

actions, mortality, or growth (Davis et al., 1998; Hampe,

2004) and their reliance on observed distributions,

which are the results of long-term historical factors

(e.g., postglacial recolonization and human manage-

ment), and environmental stochasticity, among other

factors. As they are empirical models they are based

on information relevant to present day or past species

distributions. This may make their extrapolation to

future scenarios questionable for some species and

drivers (e.g. terrestrial vegetation and CO2 fertilization)

(Guisan & Thuiller, 2005; Pearson et al., 2006; Ricke-

busch et al., 2008). One technique to reduce prediction

uncertainty is to fit ensembles of forecasts by simulating

across more than one set of initial conditions, model

classes, model parameters, and boundary conditions

(see Araújo & New, 2007, for a review) and analyze

the resulting range of uncertainties with probabilistic

methodologies rather than using a single modeling

outcome (Thuiller et al., 2006a, b; Araújo & New, 2007).

Another may be to compare results from niche-based

models to those from process-based ones (e.g. Morin &

Thuiller, 2009). In this study, we have shown both these

techniques to be valuable in reducing and highlighting

uncertainty.

The use of species level process-based models is

complicated by their necessity for a large amount of

data to be calibrated (often leading to the use of proxies,

assumptionsm and expert knowledge), and large com-

putational resources. Applications are thus restricted

to well-known species for which demography or

Fig. 6 The spatially explicit change (percentage per pixel) in average per period net primary production (NPP) (GOTILWA 1 ) and

estimated Suitability (multi-niche-based model ensemble), between the periods 1950–1980 and 2050–2080, considering both GOTIL-

WA 1 simulations with (gray) and without (black) an atmospheric CO2 increment. Lines represent linear regressions.
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physiology has been sufficiently studied. Previous stu-

dies have highlighted large differences between differ-

ent process-based model approaches (e.g., Kramer et al.,

2002) and systematic difficulties in some ecosystems

(Morales et al., 2005), for example, difficulties in repre-

senting soil water and soil water stress (Jung et al.,

2007), or accurately predicting phenology (Keenan

et al., 2009a) and related uncertainties in predicting

changes to the length of the growing season. Although

process-based models should theoretically be more

reliable than empirical models under future climate

scenarios, not all processes are fully understood (e.g.,

species adaptation, down-regulation, nitrogen cycling

etc.), potentially also making their extrapolation to

future scenarios questionable. Such uncertainties can

be effectively explored through techniques such as

Monte Carlo parameter estimation (e.g., Richardson

et al., 2010), normally showing poorly constrained re-

spiration processes, but well constrained canopy photo-

synthesis and growth. Multimodel suites, similar to that

of BIOMOD, are not used for process-based models but

could help reduce such uncertainties.

The effect of elevated CO2 has been highlighted as the

largest uncertainty in projecting future productivity of

terrestrial vegetation (Parry et al., 2004). Elevated CO2

stimulates photosynthetic carbon gain and net primary

production over the long term despite down-regulation

of Rubisco activity. It also improves nitrogen-use

efficiency at both the leaf and canopy scale, while

stimulating dark respiration via a transcriptional repro-

gramming of metabolism (Leakey et al., 2009). Experi-

mental results indicate that plants are able to increase

their water-use efficiency (WUE) as CO2 levels rise (e.g.,

Picon et al., 1996; Morison, 1998), as has been corrobo-

rated under field conditions (Peñuelas & Azcón-Bieto,

1992; Ehrlinger & Cerling, 1995; Duquesnay et al., 1998;

Gunderson et al., 2002; Ainsworth & Rogers, 2007).

Studies have also identified interspecies variability in

responses to increasing atmospheric CO2 concentra-

tions (e.g., Francey & Farquhar, 1982), and, importantly,

have highlighted the possibility of species-specific

response saturation rates (Waterhouse et al., 2004;

Betson et al., 2007). Few interspecies comparisons

exist, though the general tendencies have been shown

to be conserved over a large number of species

(Hickler et al., 2008). It should be noted, however,

that there is broad agreement that the effects of elevated

CO2 measured in experimental settings lacking poten-

tially limiting influence of pests, weeds, nutrients,

competition for resources, soil water, and air quality,

may overestimate field responses of terrestrial

vegetation (Long et al., 2006; Easterling et al., 2007;

Tubiello et al., 2007; Ainsworth et al., 2008; Zavala

et al., 2008).

Although soil water availability is the largest limita-

tion to forest growth in Mediterranean climate regions

(Allen, 2001) [and often badly represented in model

projections (Hickler et al., 2009)], fertilization studies

show that the availability of nutrient availability limits

primary production in Mediterranean ecosystems (Le-

Bauer & Treseder, 2008; Elser et al., 2007). Nitrogen

deposition is expected to increase in Mediterranean

regions in the future (Rodà et al., 2002), but nitrogen

limitation is also expected to become more pronounced

as atmospheric CO2 concentration increases (the ‘pro-

gressive nitrogen limitation’ hypothesis) (Luo et al.,

2004, 2006; de Graaff et al., 2006; Finzi et al., 2007; Reich

et al., 2006). Biogeochemical models have recently in-

corporated dynamic nitrogen cycles (e.g., Zaehle &

Friend, 2010) and results show that C–N interactions

significantly reduce the stimulation of forest NPP under

increased atmospheric CO2 concentrations (e.g., Thorn-

ton et al., 2007; Jain et al., 2009). Such down-regulation in

the response of forest productivity under elevated CO2

(Ainsworth & Rogers, 2007) is estimated at about 10%

for European forest species (Medlyn & Jarvis, 1999). It is

thus likely that the projected future NPP (under the CO2

enriched scenario) is overestimated in this study be-

cause it does not properly account for N down-regula-

tion constraints (Hungate et al., 2003; Thornton et al.,

2007).

Organisms are the products of chemical reactions,

and their development, growth and mortality depends

on various environmental factors, in particular tem-

perature, radiation, CO2, nutrients, and water availabil-

ity. In the Mediterranean region, the future presence of a

species is thus likely determined by the complex bal-

ance of temperature change, water stress. and the

species-specific capacities (e.g. Peñuelas et al., 2008).

Ultimately, species-specific responses may affect the

structure and functioning of ecosystems (Peñuelas &

Filella, 2001) due to altered competitive relationships of

key performance measures and the loss of synchroniza-

tion of development (Fitter & Fitter, 2002; Gordo & Sanz,

2005). This could strongly contribute to relative fitness

and thus to evolving biogeographic distributions.

The magnitude of climate change scenarios for past

and future periods differ among different circulation

models and therefore it is a source of uncertainty that

might affect the results of the applied models (Beau-

mont et al., 2008; Parra & Monahan, 2008). It is therefore

normally of utmost importance to apply a range of

climate models and scenarios in order to estimate the

inherent variability introduced by the choice of climate.

In this study, due to computational limitations

associated with the application of a mechanistic pro-

cess-based model, we have applied only one climate

scenario and model. Although the use of other climate
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data would change the projected distribution for each of

the species, and the productivity patterns simulated by

the mechanistic process-based model, we argue that the

qualitative conclusions of this work are independent of

the choice of climate scenario.

The presented results show that previous reports of

species decline in continental Spain (e.g. Benito-Garzon

et al., 2008) may be overestimated due to two reasons:

the use of only one predictive niche-based model, and

the failure to account for possible effects of CO2 fertili-

zation. Similar studies in other regions, which do not

consider these two aspects, are also potentially over-

estimating species decline due to climate change. Simi-

larly, the presented niche-based model results also

likely overestimate the decline in suitability.

Human effects can have large impacts on the distri-

bution of species (Channel & Lomolino, 2000). The

assumption of equilibrium between a species distribu-

tion and environmental conditions is less valid in dis-

turbed ecosystems such as Mediterranean forests,

where human influence is strong (e.g., land-use effects,

fire occurrences). It has also been reported that many

European tree species are not in equilibrium with

climate (Svenning & Skov, 2004, not P. sylvestris, which

was reported to be in relative equilibrium) as a conse-

quence of postglacial dispersal limitations (Svenning

et al., 2008). In this study, some of the observed imbal-

ance between environment and spatial aggregation of

tree species might be explained by the lack of equili-

brium between species and current environmental con-

ditions. It is also important to bear in mind that our

results are restricted to tree species in continental Spain,

and thus we can not be certain to what extent any

patterns or results that we observe here may be either

affected by species occurrences in other regions, or

extrapolated to other topoclimatic scenarios.

It is interesting and reassuring that changes in suit-

ability predicted by the niche-based models conferred

well with changes in NPP projected by the GOTIL-

WA 1 model (with no CO2 increment) for two of the

three studied species. This was not the case, however

for P. halepensis. This could be explained by the fact that

P. halepensis is distributed along the coast (Fig. 1). Many

factors other than climate can significantly influence

species distributions and distribution changes (Hampe,

2004; Coudun et al., 2006; Pearson et al., 2006) and dis-

tance from the sea is used as a strong explanatory factor

for presence prediction of P. halepensis in the niche-based

models, which is not the case for the other two species.

As distance from the sea is constant under climate

change, this could also explain why P. halepensis is

predicted to loose less of its current territory by the

period 2050–2080 due to climate change, when compared

with the other species (Table 3), and could in part explain

the difference between projects from the niche-based

models and those of GOTILWA 1 for P. halepensis.

Ecosystems in the Mediterranean basin are prone to

experience a concatenation of stochastic disturbances,

including fire, drought, clearing, grazing, and land-use

change. Mediterranean Basin ecosystems are thus char-

acterized by a certain ‘unpredictability’ (Blondel &

Aronson, 1999). This conditions local adaptation and

manifests its effect on the phenotypic variation of forest

tree species in response to macroenvironmental gradi-

ents (Volis et al., 2002). Adaptive modes could be highly

important for predicting future species responses to

climate change. The models presented here assume

nonsignificant evolutionary and/or ecological change

in a species in response to changing environmental

conditions through time [thus ignoring rapid in situ

adaptation (Thomas et al., 2001), and existing adapta-

tion of populations to local conditions (Hampe, 2004),

etc.]. Evidence suggests that species adaption has oc-

curred for many species (Pearman et al., 2008), implying

a questionable ability of models to project species

responses to potential future climates. However, we

are far from a comprehensive understanding of possible

species-specific adaptation capacities.

The identification of a general connection between

biogeochemistry, plant physiology, disturbance, and

species distributions would constitute a considerable

advance in our predictive ability (Morin et al., 2007;

Chown & Gaston, 2008). Here we take the first step in

using a biogeochemical model in comparison with a

niche-based model, estimates of species distributions.

Further work is needed to identify complementary

elements of the different modeling approaches, in order

to develop effective techniques for estimating species

responses to potential climate change.

Conclusions

Plant physiology, biogeography, and related areas of

research are currently merging to a new framework for

understanding the patterns of the distribution of life on

Earth. Ecosystem responses to climate change are dri-

ven by complex multifactor influences (Norby & Luo,

2004; Körner, 2006). An organism’s niche must therefore

be modeled mechanistically if we are to fully explain

distribution limits (Kearney, 2006), especially when

considering an organism’s distribution under novel

circumstances not used for the parameterization of the

original model, such as a species introduction or climate

change (Guisan & Thuiller, 2005). We have shown that

niche-based models give accurate predictions of present

species distributions (which can be improved through

the use of multi model ensembles) and that compar-

isons with a process-based biogeochemical model can
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be useful in highlighting areas of uncertainty in projec-

tions under potential climate change. However, given

the high variation in the accuracy of model predictions

and the species-specific nature of biological responses

to landscape changes (e.g. species responses to CO2

fertilization), it seems clear that we are far from a

comprehensive methodology for predicting the re-

sponses of individual species (and thus current stands)

to future climatic change. Our results support recent

calls for a new generation of more biologically realistic

niche-based models (Guisan & Thuiller, 2005; Kearney,

2006; Araújo & Luoto, 2007; Keith et al., 2008; Ricke-

busch et al., 2008; Montoya et al., 2009; Nogues-Bravo,

2009). Perhaps most importantly, it is vital that models

such as those used in this study are interpreted as tools

for sharpening our understanding of species range

constraints, and that they are only applied in a pre-

dictive capacity along with full appreciation of the

uncertainty involved.
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