36 research outputs found

    Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme

    Full text link
    Joint extraction of entities and relations is an important task in information extraction. To tackle this problem, we firstly propose a novel tagging scheme that can convert the joint extraction task to a tagging problem. Then, based on our tagging scheme, we study different end-to-end models to extract entities and their relations directly, without identifying entities and relations separately. We conduct experiments on a public dataset produced by distant supervision method and the experimental results show that the tagging based methods are better than most of the existing pipelined and joint learning methods. What's more, the end-to-end model proposed in this paper, achieves the best results on the public dataset

    Continuous release of O2−/ONOO− in plasma-exposed HEPES-buffered saline promotes TRP channel-mediated uptake of a large cation

    Get PDF
    Although the externally controllable extracellular supply of the short-lived reactive oxygen and nitrogen species, such as O2•−, •NO, and ONOO−, could potentially manipulate cellular functions, their simple administration to cells is likely to be ineffective due to their rapid deactivation. In this study, we found a method of a continuous supply of O2•−/ONOO− over a few minutes, which is triggered by irradiation of a nonequilibrium atmospheric pressure plasma to commonly used organic buffers (e.g., 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, HEPES). In addition, a continuous low-dose O2•−/ONOO− supply was shown to induce a physiologically relevant Ca2+ response and subsequently the uptake of a large cation mediated by transient receptor potential channel family member(s). Our results provide a novel approach to the continuous O2•−/ONOO− supply, requiring controllable and mass-volume treatments

    C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart.

    Get PDF
    BACKGROUND: Obesity and diabetes mellitus adversely affect postischemic heart remodeling via incompletely understood mechanisms. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a newly identified adipokine exerting beneficial metabolic regulation, similar to adiponectin. The aim of the present study was to determine whether CTRP3 may regulate postischemic cardiac remodeling and cardiac dysfunction, and, if so, to elucidate the underlying mechanisms. METHODS AND RESULTS: Male adult mice were subjected to myocardial infarction (MI) via left anterior descending coronary artery occlusion. Both the effect of MI on endogenous CTRP3 expression/production and the effect of exogenous CTRP3 (adenovirus or recombinant CTRP3) replenishment on MI injury were investigated. MI significantly inhibited adipocyte CTRP3 expression and reduced the plasma CTRP3 level, reaching a nadir 3 days after MI. CTRP3 replenishment improved survival rate (P CONCLUSION: CTRP3 is a novel antiapoptotic, proangiogenic, and cardioprotective adipokine, the expression of which is significantly inhibited after MI

    Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms.

    Get PDF
    Diabetes exacerbates ischemic heart disease morbidity and mortality via incompletely understood mechanisms. Although adiponectin (APN) reduces myocardial ischemia/reperfusion (MI/R) injury in nondiabetic animals, whether APN\u27s cardioprotective actions are altered in diabetes, a pathologic condition with endogenously reduced APN, has never been investigated. High-fat diet (HD)-induced diabetic mice and normal diet (ND) controls were subjected to MI via coronary artery ligation, and given vehicle or APN globular domain (gAPN, 2 μg/g) 10 min before reperfusion. Compared to ND mice (where gAPN exerted pronounced cardioprotection), HD mice manifested greater MI/R injury, and a tripled gAPN dose was requisite to achieve cardioprotective extent seen in ND mice (i.e., infarct size, apoptosis, and cardiac function). APN reduces MI/R injury via AMP-activated protein kinase (AMPK)-dependent metabolic regulation and AMPK-independent antioxidative/antinitrative pathways. Compared to ND, HD mice manifested significantly blunted gAPN-induced AMPK activation, basally and after MI/R (p\u3c0.05). Although both low- and high-dose gAPN equally attenuated MI/R-induced oxidative stress (i.e., NADPH oxidase expression and superoxide production) and nitrative stress (i.e., inducible nitric oxide synthase expression, nitric oxide production, and peroxynitrite formation) in ND mice, only high-dose gAPN efficaciously did so in HD mice. We demonstrate for the first time that HD-induced diabetes diminished both AMPK-dependent and AMPK-independent APN cardioprotection, suggesting an unreported diabetic heart APN resistance

    ART^2 : Coupling Lyman-alpha Line and Multi-wavelength Continuum Radiative Transfer

    Full text link
    Narrow-band Lya line and broad-band continuum have played important roles in the discovery of high-redshift galaxies in recent years. Hence, it is crucial to study the radiative transfer of both Lya and continuum photons in the context of galaxy formation and evolution in order to understand the nature of distant galaxies. Here, we present a three-dimensional Monte Carlo radiative transfer code, All-wavelength Radiative Transfer with Adaptive Refinement Tree (ART^2), which couples Lya line and multi-wavelength continuum, for the study of panchromatic properties of galaxies and interstellar medium. This code is based on the original version of Li et al., and features three essential modules: continuum emission from X-ray to radio, Lya emission from both recombination and collisional excitation, and ionization of neutral hydrogen. The coupling of these three modules, together with an adaptive refinement grid, enables a self-consistent and accurate calculation of the Lya properties. As an example, we apply ART^2 to a cosmological simulation that includes both star formation and black hole growth, and study in detail a sample of massive galaxies at redshifts z=3.1 - 10.2. We find that these galaxies are Lya emitters (LAEs), whose Lya emission traces the dense gas region, and that their Lya lines show a shape characteristic of gas inflow. Furthermore, the Lya properties, including photon escape fraction, emergent luminosity, and equivalent width, change with time and environment. Our results suggest that LAEs evolve with redshift, and that early LAEs such as the most distant one detected at z ~ 8.6 may be dwarf galaxies with a high star formation rate fueled by infall of cold gas, and a low Lya escape fraction.Comment: 20 pages, 16 figures, accepted for publication in MNRA

    Were progenitors of local L* galaxies Lyman-alpha emitters at high redshift?

    Full text link
    The Lya emission has been observed from galaxies over a redshift span z ~ 0 - 8.6. However, the evolution of high-redshift Lya emitters (LAEs), and the link between these populations and local galaxies, remain poorly understood. Here, we investigate the Lya properties of progenitors of a local L* galaxy by combining cosmological hydrodynamic simulations with three-dimensional radiative transfer calculations using the new ART^2 code. We find that the main progenitor (the most massive one) of a Milky Way-like galaxy has a number of Lya properties close to those of observed LAEs at z ~ 2 - 6, but most of the fainter ones appear to fall below the detection limits of current surveys. The Lya photon escape fraction depends sensitively on a number of physical properties of the galaxy, such as mass, star formation rate, and metallicity, as well as galaxy morphology and orientation. Moreover, we find that high-redshift LAEs show blue-shifted Lya line profiles characteristic of gas inflow, and that the Lya emission by excitation cooling increases with redshift, and becomes dominant at z > 6. Our results suggest that some observed LAEs at z ~ 2-6 with luminosity of L_Lya ~ 10^{42-43} ergs/s may be similar to the main progenitor of the Milky Way at high redshift, and that they may evolve into present-day L* galaxies.Comment: 15 pages, 13 figures, accepted for publication in Ap

    10 Gb/s hetsnets with millimeter-wave communications: access and networking - challenges and protocols\ud

    No full text
    Heterogeneous and small cell networks (Het- SNets) increase spectral efficiency and throughput via hierarchical deployments. In order to meet the increasing requirements in capacity for future 5G wireless networks, millimeter-wave (mmWave) communications with unprecedented spectral resources have been suggested for 5G HetSNets. While the mmWave physical layer is well understood, major challenges remain for its effective and efficient implementation in Het- SNets from an access and networking point of view. Toward this end, we introduce a novel but 3GPP backwards-compatible frame structure, based on time-division duplex, which facilitates both high-capacity access and backhaul links. We then discuss networking issues arising from the multihop nature of the mmWave backhauling mesh. Finally, system-level simulations evaluate the performance of HetSNets with mmWave communications and corroborate the possibility of having capacities of tens of gigabits per second in emerging 5G systems

    Application of mapping and dating techniques in the study of ancient carbonate reservoirs: a\ua0case study of Sinian Qigebrak Formation in northwestern Tarim Basin, NW China

    No full text
    Ancient marine carbonates experienced complex modifications, making it difficult to identify reservoir genesis and effective porosity before hydrocarbon migration. To solve these issues, we used element mapping and carbonate mineral laser U-Pb radiometric dating techniques to study the diagenetic environments based on geochemistry and diagenesis-porosity evolution based on geochronology of the dolomite reservoir of the Sinian Qigebrak Formation, northwest Tarim Basin. Two major understandings were obtained as follows: (1) Supported by petrographic observations, the element mapping, stable isotopes, strontium isotope, and cathodoluminescence tests were performed on different phases of dolomite cements precipitated in vugs and dissolved fissures. The results show that the dolomite reservoirs of the Qigebrak Formation went through freshwater, marine, extremely shallow burial, burial and hydrothermal diagenetic environments after synsedimentary dolomitization; the reservoir spaces were mainly formed in the synsedimentary period (primary pores) and freshwater environment (supergene dissolution pores) before burial; whereas the marine, burial and hydrothermal environments caused the gradual filling of reservoir space by dolomite cements. (2) Based on the above understandings, each phase of dolomite cement precipitated in the reservoir space was dated by the U-Pb radiometric dating technique, and the diagenesis-porosity evolution curves constrained by geochronology were established. The loss of reservoir porosity mainly occurred in the early Caledonian, and during the peak period of hydrocarbon generation of Yuertusi Formation source rock, the reservoirs still maintained at a porosity of 6%–10%. The above understandings provide a certain basis for the evaluation of accumulation effectiveness of the Sinian Qigebrak Formation, northwestern Tarim Basin, and provide a case for the application of mapping and dating techniques in the study of ancient carbonate reservoirs
    corecore