254 research outputs found

    Existence and stability of nonmonotone hydraulic shocks for the Saint Venant equations of inclined thin-film flow

    Full text link
    Extending work of Yang-Zumbrun for the hydrodynamically stable case of Froude number F < 2, we categorize completely the existence and convective stability of hydraulic shock profiles of the Saint Venant equations of inclined thin-film flow. Moreover, we confirm by numerical experiment that asymptotic dynamics for general Riemann data is given in the hydrodynamic instability regime by either stable hydraulic shock waves, or a pattern consisting of an invading roll wave front separated by a finite terminating Lax shock from a constant state at plus infinity. Notably, profiles, and existence and stability diagrams are all rigorously obtained by mathematical analysis and explicit calculation

    A Chinese Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differentiation and Gene Expression of Cultured Osteosarcoma Cells: Genomic Approach to Reveal Specific Gene Activation

    Get PDF
    Danggui Buxue Tang (DBT), a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA) and Radix Angelicae Sinensis (Danggui; RAS). When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation

    Service user experiences of REFOCUS: a process evaluation of a pro-recovery complex intervention

    Get PDF
    Purpose: Policy is increasingly focused on implementing a recovery-orientation within mental health services, yet the subjective experience of individuals receiving a pro-recovery intervention is under-studied. The aim of this study was to explore the service user experience of receiving a complex, pro-recovery intervention (REFOCUS), which aimed to encourage the use of recovery-supporting tools and support recovery-promoting relationships. Methods: Interviews (n=24) and two focus groups (n=13) were conducted as part of a process evaluation and included purposive sample of service users who received the complex, pro-recovery intervention within the REFOCUS randomised controlled trial (ISRCTN02507940). Thematic analysis was used to analyse the data. Results: Participants reported that the intervention supported the development of an open and collaborative relationship with staff, with new conversations around values, strengths and goals. This was experienced as hope-inspiring and empowering. However, others described how the recovery tools were used without context, meaning participants were unclear of their purpose and did not see their benefit. During the interviews, some individuals struggled to report any new tasks or conversations occurring during the intervention. Conclusion: Recovery-supporting tools can support the development of a recovery-promoting relationship, which can contribute to positive outcomes for individuals. The tools should be used, in a collaborative and flexible manner. Information exchanged around values, strengths and goals should be used in care-planning. As some service users struggled to report their experience of the intervention, alternative evaluation approaches need to be considered if the service user experience is to be fully captured

    Localization and Androgen Regulation of Metastasis-Associated Protein 1 in Mouse Epididymis

    Get PDF
    BACKGROUND: Metastasis-associated protein 1 (MTA1), the founding member of the MTA family of genes, can modulate transcription by influencing the status of chromatin remodeling. Despite its strong correlation with the metastatic potential of cancer cells, MTA1 can also regulate crucial cellular pathways by modifying the acetylation status. We have previously reported the presence of MTA1/MTA1 in human and mouse testes, providing the evidence for its involvement in the regulation of testicular function during murine spermatogenesis. The objective of present study was to further assess the localization of MTA1 in mouse epididymis on both transcriptional and translational level, and then to explore whether MTA1 expression is regulated by androgens and postnatal epididymal development. METHODOLOGY/PRINCIPAL FINDINGS: Mice were deprived of circulating androgen by bilaterally castration and were then supplemented with exogenous testosterone propionate for one week. MTA1 was immunolocalized in the epithelium of the entire epididymis with the maximal expression in the nuclei of principal cells and of clear cells in proximal region. Its expression decreased gradually after castration, whereas testosterone treatment could restore the expression, indicating that the expression of this gene is dependent on androgen. During postnatal development, the protein expression in the epididymis began to appear from day 7 to day 14, increased dramatically from postnatal day 28, and peaked at adulthood onwards, coinciding with both the well differentiated status of epididymis and the mature levels of circulating androgens. This region- and cell-specific pattern was also conservative in normal human epididymis. CONCLUSIONS: Our data suggest that the expression of MTA1 protein could be regulated by androgen pathway and its expression level is closely associated with the postnatal development of the epididymis, giving rise to the possibility that this gene plays a potential role in sperm maturation and fertility

    Emerging roles of hnRNPA1 inmodulating malignanttransformation

    Get PDF
    Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins associated with complex and diverse biological processes such as processing of heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs, RNA splicing, transactivation of gene expression, and modulation of protein translation. hnRNPA1 is the most abundant and ubiquitously expressed member of this protein family and has been shown to be involved in multiple molecular events driving malignant transformation. In addition to selective mRNA splicing events promoting expression of specific protein variants, hnRNPA1 regulates the gene expression and translation of several key players associated with tumorigenesis and cancer progression. Here, we will summarize our current knowledge of the involvement of hnRNPA1 in cancer, including its roles in regulating cell proliferation, invasiveness, metabolism, adaptation to stress and immortalization

    Viral determinants and vector competence of Zika Virus transmission

    Get PDF
    Zika virus (ZIKV) has emerged as a new global health threat. Since its first discovery in Zika forest in Uganda, this virus has been isolated from several mosquito species, including Aedes aegypti and Aedes albopictus. The geographical distribution of these mosquito species across tropical and subtropical regions has led to several outbreaks, including the recent pandemic in Brazil, followed by the Pacific islands and other areas of North and South America. This has gained attention of the scientific community to elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on clinical aspects for healthcare professionals, the relationships between ZIKV and its principal vectors, A. aegypti and A. albopictus, have not gained substantial interest in the scientific research community. As such, this review aims to summarize the current knowledge on ZIKV tropism and some important mechanisms which may be employed by the virus for effective strategies on viral survival in mosquitoes. In addition, this review identifies the areas of research that should be placed attention to, for which to be exploited for novel mosquito control strategies

    Zika Virus: What Have We Learnt Since the Start of the Recent Epidemic?

    Get PDF
    Zika is a viral disease transmitted mainly by mosquitoes of the genus Aedes. In recent years, it has expanded geographically, changing from an endemic mosquito-borne disease across equatorial Asia and Africa, to an epidemic disease causing large outbreaks in several areas of the world. With the recent Zika virus (ZIKV) outbreaks in the Americas, the disease has become a focus of attention of public health agencies and of the international research community, especially due to an association with neurological disorders in adults and to the severe neurological and ophthalmological abnormalities found in fetuses and newborns of mothers exposed to ZIKV during pregnancy. A large number of studies have been published in the last 3 years, revealing the structure of the virus, how it is transmitted and how it affects human cells. Many different animal models have been developed, which recapitulate several features of ZIKV disease and its neurological consequences. Moreover, several vaccine candidates are now in active preclinical development, and three of them have already entered phase I clinical trials. Likewise, many different compounds targeting viral and cellular components are being tested in in vitro and in experimental animal models. This review aims to discuss the current state of this rapidly growing literature from a multidisciplinary perspective, as well as to present an overview of the public health response to Zika and of the perspectives for the prevention and treatment of this disease

    Reactivity of polar organometallic compounds in unconventional reaction media : challenges and opportunities

    Get PDF
    Developing new green solvents in designing chemical products and processes or successfully employing the already existing ones is one of the key subjects in green chemistry and is especially important in organometallic chemistry, which is an interdisciplinary field. Can we advantageously also use unconventional reaction media in place of current harsh organic solvents for polar organometallic compounds? This microreview critically analyses the state of the art with regard to this topic and showcases recent developments and breakthroughs that are becoming new research directions in this field. Because metals cover a vast swath of the Periodic Table the content is organised into three sections discussing the reactivity of organometallic compounds of s-, p- and d-block elements in unconventional solvents

    Relativistic Dynamics and Extreme Mass Ratio Inspirals

    Full text link
    It is now well-established that a dark, compact object (DCO), very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes - how some of them grow by orders of magnitude in mass - lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.Comment: Update from the first version, 151 pages, accepted for publication @ Living Reviews in Relativit
    corecore