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Zika is a viral disease transmitted mainly by mosquitoes of the genus Aedes. In recent
years, it has expanded geographically, changing from an endemic mosquito-borne
disease across equatorial Asia and Africa, to an epidemic disease causing large
outbreaks in several areas of the world. With the recent Zika virus (ZIKV) outbreaks in the
Americas, the disease has become a focus of attention of public health agencies and of
the international research community, especially due to an association with neurological
disorders in adults and to the severe neurological and ophthalmological abnormalities
found in fetuses and newborns of mothers exposed to ZIKV during pregnancy. A large
number of studies have been published in the last 3 years, revealing the structure of
the virus, how it is transmitted and how it affects human cells. Many different animal
models have been developed, which recapitulate several features of ZIKV disease and
its neurological consequences. Moreover, several vaccine candidates are now in active
preclinical development, and three of them have already entered phase I clinical trials.
Likewise, many different compounds targeting viral and cellular components are being
tested in in vitro and in experimental animal models. This review aims to discuss the
current state of this rapidly growing literature from a multidisciplinary perspective, as well
as to present an overview of the public health response to Zika and of the perspectives
for the prevention and treatment of this disease.
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INTRODUCTION

Since the beginning of the 21st century, a number of infectious disease threats have emerged that
are deemed to be such a risk as to demand a global response. Most have been respiratory viral
diseases – severe acute respiratory syndrome (2003), avian influenza in humans (2005), A(H1N1)
pandemic influenza (2009), and Middle East respiratory syndrome coronavirus (MERS-CoV)
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(2012 onward). Ebola virus disease, transmitted to others by
direct contact, bucked that trend when a large outbreak in
several West African countries claimed over 11,000 lives from
2014 to 2015. Very few would have predicted the most recent
infectious disease emergency would involve a vector-borne virus,
Zika virus (ZIKV), causing congenital malformations and other
neurological disorders.

ZIKV is a flavivirus (Flaviviridae family) transmitted by
mosquitoes. The virus has been isolated from many mosquito
species, although it seems that the vectors of the natural
transmission cycle are mosquitoes of the genus Aedes (Diagne
et al., 2015). As any other flavivirus, the viral genome is composed
of a single-stranded RNA molecule of positive polarity about
10 kb in length that encodes a single open reading frame (ORF)
flanked by two untranslated regions at both ends (Kuno and
Chang, 2007).

ZIKV was first isolated in 1947 from the serum of a febrile
sentinel monkey in the Zika Forest, hence its name, and 1 year
later from Aedes africanus mosquitoes caught in the same forest
(Dick et al., 1952). Since then, it was confined to Africa until
it first detection in Asia in the 1980s. Subsequently, human
outbreaks were reported in 2007 in the Micronesia and in 2013
in the French Polynesia (Saiz et al., 2016). However, ZIKV was an
almost neglected pathogen until its recent introduction into the
Americas.

It is not the direct effect that ZIKV has on those infected
that is the main concern, as the vast majority will be either
asymptomatic or else experience a relatively mild illness
and an uneventful recovery. Rather, it is the sequelae of
infection– Guillain–Barré syndrome (GBS) and microcephaly
and other congenital malformations – that cause the morbidity
and mortality associated with the infection. As a result, the World
Health Organization (WHO) declared a public health emergency
of international concern (PHEIC) (WHO, 2016e), elements of
which were later integrated into risk assessments by the European
Centre for Disease Prevention and Control (ECDC, 2016).

This review discusses several aspects of the biology,
epidemiology, transmission and health consequences of ZIKV
infection, including findings from in vitro and in vivo models.
Disease control measures, such as vaccine development and the
public health response to ZIKV outbreaks, are also reviewed.

EPIDEMIOLOGY

The emergence of new pathogens has been the reality and a
prominent feature of the 21st century. It constitutes a global
challenge to public health, especially in developing countries.
Arboviruses such as Dengue virus (DENV), Chikungunya and
ZIKV are paradigmatic examples of such a statement.

ZIKV virus is a flavivirus first discovered in 1947 in the Zika
forest of Uganda, in a captive sentinel rhesus monkey during a
yellow fever (YF) surveillance disease activity (Dick, 1953). In
1952, the presence of human cases was demonstrated by a mouse
protection test in the sera of indigenous residents of Uganda and
Tanganika (Smithburn, 1952). During 1958, the isolation of two
strains of the virus were made in mosquitoes (Aedes africanus)

in Lungo forest (Weinbren and Williams, 1958). The virus was
also detected during the decades of 1960–1980 in sentinel Rhesus
monkeys and on mosquitoes (mainly the genus Aedes) in other
countries across equatorial Africa. Sporadic human cases of a
mild disease were reported (Saluzzo et al., 1981).

A number of serological studies in the 1950s provided some
evidence that ZIKV was widespread throughout Asia (Wikan and
Smith, 2016). The presence of ZIKV in Asia was confirmed in
1969 when the virus was isolated from an Aedes aegypti mosquito
in Malaysia (Marchette et al., 1969).

In April 2007, ZIKV spread its usual geographic range
and was detected outside Africa and Asia for the first time
when an outbreak occurred on Yap Island in the South
Western Pacific Ocean, as an emerging pathogen (Hayes, 2009).
Sera from acutely ill patients were sent to the Centers for
Disease Control and Prevention (CDC) Arbovirus Diagnostic
and Reference Laboratory in Fort Collins, Colorado, where 10
of 71 samples (14%) were found positive for the virus, as
they contained ZIKV RNA according to reverse-transcriptase-
polymerase-chain-reaction (RT-PCR) assay (Hayes, 2009). It
has been found that the attack rates of ZIKV infection were
higher among females than males and among older persons than
younger persons. In contrast, the prevalence of IgM antibody
against ZIKV was higher in male participants (possibly due to
their greater exposure to mosquitoes) and was relatively equally
distributed across age groups (Hayes, 2009).

Although wind-blown mosquitoes can travel distances of
several hundred kilometers over the open ocean, introduction of
the virus by travel or trade involving an infected person or an
infected mosquito is considered the most likely source of the Yap
Island outbreak, especially because no monkeys were present on
the island during the outbreak (Hayes, 2009; Kindhauser et al.,
2016).

The fact that ZIKV caused such a widespread outbreak on Yap
Island, numbering more than 100 confirmed and probable cases,
is striking. The absence of any evidence that viral mutation could
explain changes in the epidemiological behavior of the virus has
led to several other explanations being postulated, including a
lack of population immunity; that means that regular exposure to
infection by populations in Africa and Asia may have prevented
large outbreaks in those regions, such as those seen on the Pacific
Islands and in the Americas (Kindhauser et al., 2016).

Another possible reason for this change may lay on the
probable under-reporting, which could explain missing reports
of previous outbreaks, especially due to the clinical similarities
of mild illnesses associated with ZIKV, DENV, and Chikungunya
infections, and the frequent co-circulation of all three viruses
(Paixao et al., 2016).

Since 2008, the availability of information about the virus has
increased, including data on epidemiology, causal associations,
and possible sexual transmission. Clinical and serologic evidence
suggested that a US-American scientist contracted ZIKV
infections while working in Senegal in 2008, and then transmitted
this arbovirus to his wife after his return home. Direct contact
was implicated as the transmission route, most likely as a sexually
transmitted infection (Foy et al., 2011). Additional evidence was
found during a ZIKV outbreak in French Polynesia (2013): the
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virus was isolated from the semen of a patient in Tahiti that
sought treatment for hematospermia (Musso et al., 2015).

Retrospective surveys identified an unusual and
heterogeneous cluster of congenital brain malformations
and brainstem dysfunction in fetuses and newborns over a
limited period following a ZIKV epidemic in French Polynesia
(Besnard et al., 2016), prompting the conclusion of causal
association (Araujo et al., 2016).

In 2016, ZIKV spread rapidly throughout the Americas
after its initial appearance in Brazil in May 2015. In 2016,
48 countries and territories in the Americas had reported
more than 532,000 suspected cases of Zika, including 175,063
confirmed cases. In addition, 22 countries and territories reported
2,439 cases of a congenital syndrome associated with Zika.
Five countries had reported sexually transmitted Zika cases
(The Pan American Health Organization [PAHO]/World Health
Organization [WHO], 2015; Ikejezie et al., 2017).

In Brazil, the most heavily affected country, a very rapid
dispersion of ZIKV was identified, mainly in the Northeast
region. This area has the lowest vaccine coverage for YF and
notified 65.7% of all cases (De Goes Cavalcanti et al., 2016). Only
from March to September 2016, which is considered the highest
transmission period in Brazil, as evidenced by a large number
of dengue cases observed over years, there was an incidence
rate of ZIKV infections of 69.22 cases/100,000 newborns, a
mortality coefficient of 5.37 deaths/100,000 newborns and a
case fatality rate of 7,750 deaths/100,000 cases. The highest
incidence and mortality were found in the Northeast region with
201 cases/100,000 newborns and 4 deaths/100,000 newborns,
respectively (SVS/MS, 2017).

The rapid spread of ZIKV disease in the Americas was
aided by the lack of effective control of vectors of other
arboviruses like DENV and Chikungunya, in several countries
of Latin America (Rodriguez-Morales, 2015). For decades, vector
control programs have failed, due to the adaptation capacity and
biological efficiency of the vectors (Al-Abdely, 2016). Additional
challenges for population-based surveillance of ZIKV disease
include remote locations, porous borders with neighboring
countries, and underreporting by health care providers, all of
which can limit the ability to ascertain all cases of ZIKV disease.
Underreporting of cases would be particularly marked if they
occur in areas that are not considered to be at risk for ZIKV
disease, such as those at elevations of more than 2,000 m above
sea level (Pacheco et al., 2016).

To summarize, the global emergence (Figure 1) of certain
arboviruses, such as ZIKV, that in the past were considered
to be restricted to specific geographical areas and to cause
a mild disease of sporadic behavior, indicates the importance
of such diseases to epidemiology and public health, from
the perspective of adaptation potential, certain and probable
vectors, surveillance and control, and also communication,
interdisciplinary investigation and intersectoral cooperation. In
other words, “new threats from infectious diseases may emerge
from unexpected places, and we need strategies in place that we
can roll out to rapidly gain an understanding of the transmission,
pathogenesis, and control of previously little-known pathogens
to protect global public health” (Lessler et al., 2016).

Maybe it is time to reconsider research horizons, and to pay
attention to the integral circle of host, agent, environment and
vector. Health promotion approaches are still valid, and can
be an alternative for the global reality of health inequities and
weakening of public services (Caprara and Ridde, 2016).

BIOLOGY OF THE ZIKV

Molecular Classification and Phylogeny
Historically, ZIKV has been classified into the Spondweni
serogroup, genus Flavivirus (Flaviviridae), which includes two
species: ZIKV and Spondweni virus (Casals, 1957). Further
molecular classifications confirmed these relationships between
both species (Kuno et al., 1998; Haddow et al., 2012). Nowadays,
ZIKV isolates can be grouped into two or three major lineages
(Figure 2). These lineages correspond to the African lineage,
the Asian lineage (that includes the American strains) and a
neglected lineage circulating in Africa (designated African II) that
would constitute a sister group to both African (which should be
renamed to African I) and Asian lineages previously identified
(Faye et al., 2014; Gong et al., 2016; Wang L. et al., 2016; Li Y.
et al., 2017). All these phylogenetic analyses indicate that ZIKV
originated from Africa and then spread to Asia, Pacific islands,
and throughout the Americas. The introduction of ZIKV into the
Americas most probably occurred by a single introduction of an
Asian strain of ZIKV between May and December 2013 (Faria
et al., 2016). Remarkably, despite the genetic differences between
ZIKV strains, the antigenic relationships between strains support
the existence of a single viral serotype which may be of crucial
importance for the design of ZIKV vaccines (Dowd et al., 2016a).

Genome
The viral genome is composed of a single-stranded RNA molecule
of positive polarity about 10 kb in length (Kuno and Chang,
2007). In a similar manner to cellular mRNAs, ZIKV genome
includes a cap structure at its 5′ end, but in contrast to cellular
mRNAs, ZIKV genome lacks a 3′ poly(A) tract and ends with
CUOH (Figure 3A). The genome contains a single ORF flanked
by two untranslated regions located at the 5′ and 3′ ends of the
genome (Kuno and Chang, 2007). ZIKV genome also contains
three conserved sequences (CS 1 to CS3) that may mediate
genome cyclization between 5′ and 3′ terminal regions of the
genome. Notably, the organization of the CS in the 3′ end of
ZIKV is different from that of other mosquito-borne flaviviruses
(Kuno and Chang, 2007). Besides genomic RNA, it has been
described that due to the presence of a multi-pseudoknot
structure in the genomic RNA that confounds a cellular
exonuclease, ZIKV-infection also produces subgenomic flaviviral
RNAs (sfRNAs) within infected cells that play relevant roles in
innate immunity evasion and viral pathogenesis (Akiyama et al.,
2016; Donald et al., 2016).

Proteins
The polyprotein encoded by the single ORF in ZIKV is cleaved
by cellular and viral proteases into 10 mature proteins (three
structural and seven non-structural proteins) (Figure 3A).
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FIGURE 1 | Classification of countries and territories regarding vector-borne Zika virus transmission. Map of the current Zika virus transmission based on the
European Center for Disease Prevention and Control (ECDC) adaptation of the World Health Organization (WHO)’s Zika virus country classification scheme
(https://ecdc.europa.eu/en/publications-data/current-zika-virus-transmission-list-countries-ecdc-adaptation-whos-zika-virus - accessed 16 July 2017). The map
was generated using GADM database of Global Administrative Areas shapefiles (http://www.gadm.org/) and Openlayers plugin within QGIS 2.18.9 (Development
Team, 2017, available at http://www.qgis.org/en/site).

The sequence of the cleavage sites of ZIKV follows the
patterns established for other mosquito-borne viruses (Kuno and
Chang, 2007). The three structural proteins [the capsid (C),
premembrane/membrane (prM/M), and envelope (E) proteins]
participate in the assembly of the virions. The C protein conform
the core of the virions together with the RNA. The E protein
should mediate the binding to the cellular receptor of the virus,
promotes the fusion of the virions with the target membranes,
and constitutes the main target for the induction of antibodies
(Dai et al., 2016; Stettler et al., 2016; Wang Q. et al., 2016;
Zhang C. et al., 2016). The E protein is N-glycosylated at Asn
154 in most ZIKV strains. This glycosylation is important for
particle protein expression and secretion, viral packaging, and
infectivity (Mossenta et al., 2017). The cleavage of prM into M
protein promotes the maturation of the virions from “spiky”
immature particles to “smooth” mature particles (Prasad et al.,
2017). In a similar way to that described for other flaviviruses
(Martin-Acebes and Saiz, 2012), the seven non-structural (NS)
proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) should
account for a variety of functions that go from replication of viral

RNA, morphogenesis of viral particles, induction of membrane
rearrangements, and viral factory development to modulation of
host immune response. The NS1 protein, whose structure has
been resolved (Song et al., 2016; Xu X. et al., 2016), participates in
flaviviral replication and exhibits immunomodulatory activities.
Since NS1 protein is secreted from infected cells, it largely
induces antibodies within infected hosts that can be suitable
for diagnostics purposes (Dai et al., 2016; Steinhagen et al.,
2016). Regarding NS2A, to our knowledge, there are no specific
studies addressing the function of this protein in ZIKV. On the
other hand, NS3 is a trypsin-like serine protease involved in
polyprotein processing (Gruba et al., 2016; Lei et al., 2016) that
also exhibits helicase activity, which plays a pivotal role in viral
RNA replication enabling RNA unwinding (Tian et al., 2016).
Apart from its involvement in viral polyprotein processing, NS3
can cleave cellular factors such as FAM134B, hence modulating
the autophagic response within ZIKV-infected cells (Lennemann
and Coyne, 2017). NS2B acts as a cofactor necessary for the
activity of this protein, and the crystal structure of NS2B-
NS3 complex has been resolved under different circumstances
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FIGURE 2 | Phylogram of Zika virus (ZIKV). The phylogenetic tree was based on the sequence of NS5. Multiple alignment was performed using MUSCLE (Edgar,
2004) and the tree was constructed by the Maximum Likelihood method using PhyML (Guindon et al., 2010) and Phylogeny.fr (Dereeper et al., 2008). Spondweni
virus was included as the outgroup control.

(Lei et al., 2016; Phoo et al., 2016; Zhang C. et al., 2016).
Due to the relevance of NS2B-NS3 function in the ZIKV life
cycle, the search for inhibitors of the enzymatic activity of
this complex is at the front line of antiviral discovery against
ZIKV (Cao et al., 2016; Sahoo et al., 2016; Lee et al., 2017; Rut
et al., 2017). NS4A and NS4B deregulate Akt-mTOR signaling to
inhibit neurogenesis and induce autophagy (Liang et al., 2016).
In addition, the expression of NS4A has been also related to
activation of the cellular stress pathway involving Tor1 and
type 2A phosphatase activator Tip41 (Li G. et al., 2017). NS5
is the viral RNA-dependent RNA polymerase that is in charge
of genome replication constituting a major target for antiviral
design (Lu et al., 2017; Xu et al., 2017). Furthermore, the analysis
of the structure of the methyltransferase domain of NS5, which
is responsible for capping the 5′ end of the viral genomic
RNA, also provides new opportunities for the design of antiviral
compounds (Coloma et al., 2016; Stephen et al., 2016; Zhang C.
et al., 2016; Coutard et al., 2017; Zhou et al., 2017). Besides its
function in genome replication and capping, NS5 from ZIKV
also contributes to viral multiplication by inhibiting interferon
signaling (Grant et al., 2016). Although a great effort has been

performed to decipher the structure and function of some of the
ZIKV NS proteins, many issues still remain to be analyzed, as
the more detailed knowledge of their function would probably
provide valuable information about the pathogenesis of ZIKV,
and would also greatly contribute to the development of antiviral
strategies against this pathogen.

Virion
Early filtration studies suggested that the size of ZIKV particles
was about 30 to 45 nm in diameter (Dick, 1952). Further
transmission electron microscopy showed that the virions were
spherical particles with an overall diameter of 40 to 43 nm
displaying a central electron dense core being 28 to 30 nm
in diameter (Hamel et al., 2015). Nowadays, cryo-electron
microscopy reconstructions of mature virions have provided
a detailed view of the structure and organization of mature
ZIKV particles (Kostyuchenko et al., 2016; Sirohi et al., 2016).
The internal core of the particle is composed of the genomic
RNA molecule complexed with multiple copies of the capsid
(C) protein, enclosed within a lipid membrane derived from the
endoplasmic reticulum of the host cell. The E and M proteins
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FIGURE 3 | Genomic organization, virion structure, and organization of the E
glycoprotein of Zika virus (ZIKV). (A) Schematic view of the genomic
organization of ZIKV. The single open reading frame (ORF; boxes) that
encodes both structural (C-prM/M and E) and non-structural (NS) proteins
(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) is flanked by two
untranslated regions (UTRs). Notice the presence of a 5′ cap and the lack of a
poly(A) tail at the 3′ end of the genome. (B) Surface representation of a ZIKV
mature particle. The E monomers are colored in blue, orange and green to
facilitate the interpretation of their distribution. Image was produced using the
cryo-electron microscopy data available (Protein Data Bank entry 5IRE).
(C) Structure of a monomer of the soluble ectodomain of E glycoprotein of
ZIKV. The ribbon diagram was based on the atomic coordinates solved by
X-ray crystallography (Protein Data Bank entry 5JHM). DI in red, DII in yellow,
and DIII in blue. Fusion loop is highlighted in green.

(180 copies of each protein) are anchored to this lipid membrane
via their transmembrane regions. Since the M protein is a small
protein hidden under the E protein layer, the outer layer of the
viral particles consists of an icosahedral protein shell basically
composed of the E protein (Figure 3B). This outer shell exhibits
the characteristic herringbone structure in the virion similar to
that of other flaviviruses. The E proteins are arranged as 90
anti-parallel homodimers, with three dimers lying parallel to
each other forming a raft. The ectodomain of the E protein that
protrudes from the lipid bilayer is organized in three different
domains: DI, DII, and DIII (Figure 3C). DI acts as a bridge
between DII and DIII. The tip of DII contains the hydrophobic
fusion loop that interacts with cellular membranes for viral

fusion (Kostyuchenko et al., 2016; Sirohi et al., 2016). DIII is
the target for most neutralizing antibodies, whereas antibodies
against DI/DII are poorly neutralizing (Stettler et al., 2016; Zhao
et al., 2016). As mentioned above, the E protein is glycosylated at
Asn 154 in most ZIKV strains, and this glycan protrudes from the
surface of the particle. Remarkably, the region surrounding the
glycosylation site structurally greatly differs from other related
flaviviruses (Kostyuchenko et al., 2016; Sirohi et al., 2016). Also,
in contrast to that described for DENV, ZIKV particles are
structurally stable even when incubated at 40◦C (Kostyuchenko
et al., 2016). Although it has been proposed that this thermal
stability may have implications for virus survival in body fluids
such as saliva or semen (Kostyuchenko et al., 2016), other studies
discard that the unique pathobiology of ZIKV may be only the
cause of its thermal stability (Goo et al., 2016).

MODES OF TRANSMISSION

Vectorial Transmission
ZIKV was isolated for the first time from a sentinel allocthonous
monkey in Uganda in 1948; just 1 year later the sylvatic Aedes
africanus was found infected in the same site of the Zika Forest,
and again in 1958, 1964, and 1969, caught both from the
upper canopy and from ground level. Since then, during the
period when the records are still mainly restricted to Africa
many Aedes species reported harboring ZIKV: Ae. vitatus, Ae.
hirsutus, Ae. unilineatus, Ae. metallicus. Ae. apicoergenteus, Ae.
opok, Ae. dalzieli, Ae. luteocephalus, Ae. tayliri (Haddow et al.,
1964; Hayes, 2009; Faye et al., 2013; Diallo et al., 2014; Vorou,
2016). Out of Africa, Ae. hensillii was incriminated in the Yap
Island as the prevalent species during the outbreak and it was
demonstrated experimentally capable of transmission, while in
French Polynesia Ae. polynesium probably contributes to the
transmission (Duffy et al., 2009; Ledermann et al., 2014; Richard
et al., 2016).

The scenario of potential worldwide spread of ZIKV changed
radically when Ae. aegypti and Ae. albopictus were identified
as vectors during the outbreak in Brazil (Ferreira-de-Brito
et al., 2016). Actually, Ae agypti had already been demonstrated
competent for ZIKV in 1956 and isolated from Malaysia in 1969.
In addition, it was incriminated in the French Polynesia and
Indonesia outbreaks and retrospectively in Africa (Marchette
et al., 1969; Richard et al., 2016). Ae. albopictus was associated
with the outbreak in Gabon in 2007 as this Asian mosquito
successfully replace the native Ae. aegypti in many areas of Africa
(Grard et al., 2014), and it was also shown to be a potential vector
in Singapore (Wong et al., 2013). These ubiquitous two mosquito
species, with their dynamic adaptation to urban environments,
capacity to breed in cryptic containers, to survive to adverse
seasons or to be dispersed passively by humans (adults, desiccated
eggs-Ae aegypti), to tolerate temperate climates and even keep
sylvatic niches (Ae. albopictus), together with the increase in
the last decades of social trends as those of urbanization,
traveling (speed and number of people involved), migration and
climate extraordinary events, generates the current epidemic risk
momentum.
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Further, species that belong to genera other than Aedes as
Culex perfuscus, Anopheles coustani, An. gambiae s.l., Mansonia
uniformis were found infected with ZIKV in Africa (Vorou,
2016), but the isolations only prove that these mosquitoes
recently fed on a viremic vertebrate. On the other hand, the
vector competence is the innate capability to acquire and sustain
the pathogen, and transmit it to a host, so many experiments
on competence were performed in alternative vectors, mainly
with Cx pipiens and Cx quinquefasciatus. The results showed
arguments that support (Franca et al., 2016; Guedes et al.,
2016; Guo et al., 2016) or reject (Aliota et al., 2016b; Amraoui
et al., 2016; Boccolini et al., 2016; Fernandes et al., 2016; Hall-
Mendelin et al., 2016; Huang Y.J. et al., 2016; Weger-Lucarelli
et al., 2016; Hart et al., 2017) Culex vector competence. To
understand so many disparate results, the protocols should be
analyzed and compared taking into account several issues that
include the virus-vector origin (geographical coherence), and
virus and vector past history in the laboratory (number of
passages/generations) that made them genetically quite different
to the complex wild circulating ones (Berthet et al., 2014; Bennett
et al., 2016; Chouin-Carneiro et al., 2016; Wang L. et al.,
2016).

However, even if the vector competence is assessed, it is
rather different from vector capacity. The last concept attempts
to explain the likelihood of effective human-vector contact
and transmission, and depends not only on innate vector
characteristics but also on local density, host range, and blood
feeding behavior, biting rate, survival rate and colonization
success (interspecific competence), as well as transovarial
(Thangamani et al., 2016) and horizontal transmission.
Therefore, even the presence of Ae aegypti does not confirm
this species as the primary vector (Diagne et al., 2015; Di Luca
et al., 2016; Weger-Lucarelli et al., 2016), and an undescribed
sylvatic cycle in Asia should not be discarded (Althouse et al.,
2016).

Focused in the main known urban vectors, Ae. aegypti and
Ae albopictus, databases and maps of current or forecasted
distribution were developed as a proxy of risk maps for ZIKV or
Aedes-borne arbovirus (Kraemer et al., 2015a,b; Messina et al.,
2016). The modeling of simulated risk is usually driven by
temperature, precipitation, elevation, land cover and modulated
by variables as seasonal or year-round abundance and density
(population dynamics), vector biting and mortality rates, and
extrinsic incubation period (Carlson et al., 2016; Escobar et al.,
2016; Messina et al., 2016; Samy et al., 2016; Attaway et al.,
2017). However, besides the accuracy and the assumptions of
the model itself, some methodological matters require usually
in-depth considerations from the mapping to assess the actual
risk, as the space and time scale consistency between data and
conclusions, accuracy and representativeness of field-collected
data, and the particularities at smaller time or spatial scales
(Jian et al., 2016; Misslin et al., 2016; Fischer et al., 2017;
Li X. et al., 2017). Hence, the Latin America outbreak was
explained by 2015–2016 ‘El Niño-Oscillation South’ 2015–2015
at continental level, but also at sub-regional level in Brazil it
was explained by year to year variability (drought 2013–2015)
and decadal variability followed by long-term trends as climate

change (warm 2014–2015) (Munoz et al., 2016; Caminade et al.,
2017). Furthermore, biological topics, as vector competence of
local vectors (Gardner et al., 2016), vector competence between
species (Camara et al., 2016), and the timing and location
of vector or virus introduction (Robert et al., 2016; Walther
et al., 2017) can change the probability and magnitude of
transmission. Nevertheless, the anthropogenic factors usually
are the main ones that trigger actual epidemics, even through
climatic extreme events (Ahmed and Memish, 2017), and so some
modeling in border areas includes also travel between borders
and socioeconomic factors (Monaghan et al., 2016), while drivers
of non-vectorial transmission still need better epidemiological
elucidation (Guzzetta et al., 2016).

Non-vectorial Transmission
Since the first report of probable sexual transmission of ZIKV by
Foy et al. (2011), many studies were published showing evidence
of male-to-female, male-to-male and female-to-male sexual
transmission by unprotected vaginal, oral or anal intercourse
(Moreira et al., 2017). This hypothesis has been strengthened by
numerous reports showing the long-term detection of ZIKV RNA
and the isolation of infectious ZIKV from semen (Musso et al.,
2015; Matheron et al., 2016; Nicastri et al., 2016; Moreira et al.,
2017). ZIKV RNA has also been detected in female genital tract
samples beyond viremia, albeit more transiently than in semen:
it became undetectable around 3 weeks after symptom onset
(Prisant et al., 2016, 2017; Murray et al., 2017). Moreover, Penot
et al. (2017) have isolated infectious ZIKV from vaginal samples
collected 3 days after the onset of symptoms from a woman with
controlled HIV infection.

Remarkably, the vertical transmission of ZIKV (Besnard
et al., 2014; Brasil et al., 2016; Calvet et al., 2016; Driggers
et al., 2016; Oliveira Melo et al., 2016) has become a major
public health challenge, as will be discussed below. It still
needs to be demonstrated, however, whether ZIKV can be
transmitted through breastfeeding. Infectious ZIKV particles
have been isolated from the breast milk of 1 mother and
ZIKV RNA was detected in the breast milk of 3 symptomatic
mothers (Besnard et al., 2014; Dupont-Rouzeyrol et al., 2016).
Other reported forms of non-vectorial transmission include
non-sexual person-to-person contact (Swaminathan et al.,
2016), and transmission by blood transfusion (Motta et al.,
2016).

CLINICAL MANIFESTATIONS

It has been estimated that the ZIKV infection may be
symptomatic in 18–57% of cases, in which it causes a mild,
self-limiting disease with an incubation period of up to 10 days
(Duffy et al., 2009; Aubry et al., 2017). Symptomatic patients may
develop fever and influenza-like symptoms relatively common
in arboviral infections, such as rash, joint pain, conjunctivitis,
headache and myalgia (Ahmad et al., 2016). These relatively
mild symptoms last a few days and uncommonly result in
hospitalization (Duffy et al., 2009). More recently, however,
ZIKV infection has been associated with neurological and
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FIGURE 4 | Clinical manifestations and consequences of Zika virus (ZIKV) infection. Schematic illustration of the effects described in adults and fetuses/newborns
after ZIKV infection. Figure created in the Mind the Graph platform.

ophthalmological complications, including GBS in adults and
microcephaly in fetus and newborns (Figure 4).

Neurological Complications in Adults
Two cases of encephalopathy syndromes, with seizures or
electroencephalographic changes, were seen in Martinique as
part of ZIKV infection, probably due to encephalitis (Roze
et al., 2016). Carteaux et al. (2016) reported a case of an 81-
year old man from France who was admitted to an Intensive
Care Unit 10 days after a cruise to Pacific islands, with fever
and decreased level of consciousness, being diagnosed with
meningoencephalitis and had a positive RT-PCR for ZIKV
in his cerebrospinal fluid. The patient later recovered and
was discharged after 17 days, with cognitive function fully
recovered after 38 days and residual weakness in his left arm.
In Brazil, a 47-year old pregnant patient was admitted to
an Intensive Care Unit with confusion, dysarthria and lower
limb weakness, 4 days after presenting a rash and arthralgia
(Soares et al., 2016). The patient was diagnosed with encephalitis
and had a positive PCR for ZIKV in her urine and IgM
ZIKV antibody in her cerebrospinal fluid and serum, and
passed away after 11 days (Soares et al., 2016). Since these
observations have only recently been described, very little
is known about the frequency of a direct central nervous
system (CNS) infection by ZIKV. A possible confounder is

the simultaneous occurrence of various arboviruses, such as
Chikungunya and DENV, since these arboviruses can cause a
direct CNS invasion with myelitis, encephalitis, and meningitis
(Moulin et al., 2016).

Throughout the ZIKV epidemic in French Polynesia, an
increase in the number of patients presenting with GBS was
seen (Paploski et al., 2016). Other arboviral infections such
as dengue, chikungunya, Japanese encephalitis, and West
Nile fever (WNF) have been associated with GBS (Ravi et al.,
1994; Lebrun et al., 2009; Leis and Stokic, 2012; Verma et al.,
2014). Cao-Lormeau et al. (2016) published a case-control
study reporting the occurrence of 42 cases of GBS after a
Zika outbreak between October 2013 and April 2014, in
comparison to 5–10 cases in the same period in previous
years. All 42 patients had neutralizing antibodies against ZIKV,
whereas only 56% of neutralizing antibodies were found in
the serum from a control group of 98 patients without GBS.
The majority of GBS patients (93%) had detectable ZIKV IgM
and 88% had a systemic febrile disease with symptoms that
corresponded to ZIKV infection before the development of
the neurological symptoms. This cohort of ZIKV associated
GBS was classified electrophysiologically as acute motor axonal
neuropathy (AMAN) with a rapid onset of disease (4 days
to reach the plateau). Approximately one-third of patients
required intensive medical therapy with mechanical ventilation
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(Cao-Lormeau et al., 2016). Anti-glycolipid antibodies were
found in 31% of patients. However, anti-ganglioside antibodies
typical of AMAN were rarely present (Cao-Lormeau et al., 2016).
Dos Santos et al. (2016) performed an analysis of ministry of
health websites and International Health Regulations channels
to compare the occurrence of GBS before and after the Zika
outbreak. They found an increase of 877% in Venezuela, 400%
in Suriname, 211% in Colombia, 172% in the Brazilian state of
Bahia, 150 % in the Dominican Republic, 144% in Honduras and
100% in El Salvador.

Neurological Complications in Newborns
Zika infection has been confirmed in newborns with
microcephaly, and an up to 20-fold increase in the number
of microcephaly cases in the French Polynesia, Brazil and other
Latin American countries (Brasil et al., 2016; Jouannic et al.,
2016; Schuler-Faccini et al., 2016; Ventura et al., 2016a). After
the French Polynesia epidemic between October 2013 and April
2014, 14 cases of fetuses and newborns with brain abnormalities
(six of them without microcephaly) and five cases with brainstem
dysfunction were observed, much higher numbers than those
expected outside the epidemic period. Symptomatic cases were
related to infections acquired during the first trimester, which
is consistent with other congenital infections, such as rubella,
cytomegalovirus, and toxoplasmosis (Besnard et al., 2016).
However, some severe forms have been described in infections
acquired after 20 weeks of gestation (Brasil et al., 2016). There is
not always evidence of infection of mothers or fetuses by ZIKV
but its presence in the amniotic fluid has been documented
(Brasil et al., 2016). The rate of fetal transmission and the actual
incidence of serious congenital infections remain unclear. The
virus has been detected in fetal cerebral tissues by RT-PCR and
electron microscopy (Mlakar et al., 2016).

Brasil et al. (2016) included 345 pregnant women with
a history of rash within 5 previous days in a cohort study
from September 2015 to May 2016. A total of 182 (53%)
tested positive for ZIKV in the blood, urine, or both, and
outcomes were available for 125 of these patients. There were
nine fetal deaths, and the remaining 116 ZIKV-positive women
gave birth to 117 live infants, 42% of which had grossly
altered clinical and/or neuroimaging findings, four of them
with microcephaly. Melo et al. (2016) followed 11 infants with
congenital ZIKV syndrome from gestation to 6 months in Brazil,
identifying neurological injuries that included lissencephaly
with hydrocephalus, ventriculomegaly, microcephaly, reduction
in cerebral volume, cerebellar hypoplasia and arthrogryposis.
Soares de Oliveira-Szejnfeld et al. (2016) performed radiological
investigation in 17 patients with confirmed ZIKV infection
and 18 with presumed ZIKV. The authors reported that
neuroimaging abnormalities were similar between both groups,
with the more frequent being ventriculomegaly, corpus callosum,
infections, intracranial calcifications in the junction of the gray-
white matter or in the thalamus and/or basal ganglia.

Ophthalmological Complications
Ventura et al. (2016a) first described ocular lesions in three
infants of ZIKV-infected mothers in Brazil, who presented

with microcephaly and cerebral calcifications. Mothers and
their children underwent ophthalmological evaluation by
biomicroscopy and fundus examination. None of the infected
mothers presented eye lesions; however, their infants had gross
pigment mottle in the macula and no foveal reflex. ZIKV
infection was not tested by RT-PCR, but this was the first
warning of its deleterious effects on the developing visual system.
The same group also reported on a 57-day infant without
microcephaly that had chorioretinal scar on the macula of the
left eye (Ventura et al., 2016b). Later, the same group published
a study with 40 infants with microcephaly, and reported that
eye lesions were more frequent in infants whose mothers had
symptoms during the first trimester and infants who had smaller
cephalic diameters (Ventura et al., 2016c).

A report by de Paula Freitas et al. (2016) evaluated 23
out of 27 women with suspected infection by ZIKV who had
presented clinical manifestations during gestation. Eighteen of
them presented them during the first trimester; four occurred in
the second trimester and one in the third trimester of gestation.
The newborns were studied by ophthalmic examination and,
of 29 children (58 eyes), 10 (35.5%) ocular abnormalities were
identified in 17 eyes (29.3%). The main fundus results were
perimacular and macular pigmented and atrophic lesions, diffuse
retinal pigment epithelial damage and chorioretinal atrophy,
which in some cases presented very severe forms affecting
the macula. They also reported the occurrence of optic nerve
abnormalities, mainly hypoplasia, and other findings such as
retinal vasculitis, lens subluxation and iris coloboma. In the
study, the authors described bilateral findings in 2/3 of the
children examined. The authors determined that congenital
ZIKV infection was associated with potentially blinding eye
disease, including bilateral irreversible macular and perimacular
lesions and involvement of the optic nerve (de Paula Freitas et al.,
2016).

MODELS OF ZIKV-INDUCED NEURAL
DAMAGE

Well before the first suspected cases of ZIKV-associated
neurological disorders in humans, there were reports showing
the marked neurotropism of ZIKV strains isolated in Uganda
(Dick, 1952; Bell et al., 1971). These studies briefly described
the neuropathological changes induced by the intracerebral
inoculation of ZIKV in newborn and adult mice, such as the
severe neuronal degeneration and reactive astrocytosis in the
hippocampus of newborn Webster Swiss mice inoculated with
ZIKV (Bell et al., 1971). Only recently, however, after the recent
outbreak of ZIKV in South and Central America, the study of the
vulnerability of neural cells to ZIKV infection has become a focus
of intense research.

In Vitro and Ex Vivo Models of ZIKV
Infection in Neural Cells and Tissues
In vitro studies using human induced pluripotent stem cells
(iPSC) have allowed the investigation of the consequences of
ZIKV infection in different types of human neural stem cells
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(NSC), neural progenitor cells (NPC) and their progeny, as well
as in cerebral organoids (Cugola et al., 2016; Garcez et al., 2016;
Souza et al., 2016; Tang et al., 2016). Human organotypic fetal
brain slices (Onorati et al., 2016; Retallack et al., 2016), human
NPC derived from the fetal brain (Hanners et al., 2016; Liang
et al., 2016; Onorati et al., 2016) and immortalized cells lines also
have been employed to study the neurovirulence of ZIKV.

Tang et al. (2016) were the first to show that the MR766 strain
of ZIKV (from Uganda) infected iPSC-derived forebrain-specific
human NPC, leading to cell-cycle dysregulation and apoptosis,
whereas human iPSC and immature neurons exhibited lower
levels of infection. In line with these evidence, Garcez et al.
(2016) showed that, while both ZIKV (MR766 strain) and
DENV 2 (16681 strain) were capable of infecting human
NSC, only ZIKV induced apoptosis in NSC, impaired the
formation of neurospheres and decreased the growth rate of
human brain organoids. Further studies revealed that brain
organoids represent an interesting platform for the study of
ZIKV-associated microcephaly (Cugola et al., 2016; Dang et al.,
2016; Qian et al., 2016; Wells et al., 2016; Gabriel et al., 2017). For
instance, Qian et al. (2016) exposed brain organoids at different
stages of cortical neurogenesis to ZIKV (MR766) for 24 h. They
showed that most of the infected cells were NPC, although
the virus could be detected to a lesser extent in immature
neurons, intermediate progenitor cells, and astrocytes. Infection
of early stage organoids decreased the number of proliferating
cells and induced apoptosis in infected and non-infected cells. As
a consequence, the ventricular zone and the neuronal layer were
thinner and the ventricles were enlarged in infected organoids,
resembling some of the characteristics of microcephaly.

ZIKV Induces Apoptosis, Autophagy and Mitotic
Abnormalities in NSC/NPC
Studies using an Asian strain of ZIKV (FSS13025, isolated in
Cambodia) (Zhang F. et al., 2016) or ZIKV isolated from recent
outbreaks in Brazil (Cugola et al., 2016; Souza et al., 2016; Garcez
et al., 2017; Sacramento et al., 2017), Puerto Rico (Hanners et al.,
2016; Wells et al., 2016) and French Polynesia (Ghouzzi et al.,
2016) have shown the ability of the virus to infect and induce
apoptosis of human NPC.

Another common feature of the different strains of ZIKV is
the capacity to inhibit the proliferation of NPC. In this regard,
Liang et al. (2016) screened the effects of ten ZIKV-encoding
potential proteins and found that the ectopic expression of
two proteins (NS4A and NS4B, alone or in combination)
inhibited neurosphere formation, decreased the proliferation
rates of NSC derived from human fetuses, and reduced their
capacity to differentiate into neurons and astrocytes. They
showed that the co-expression of NS4A and NS4B induced
autophagy, by impairing Akt/mTOR signaling, and suggested
that the efficient replication of ZIKV requires autophagy (Liang
et al., 2016). Infection with either the Brazilian ZIKV or the
Cambodian ZIKV strain FSS 13025 caused mitotic abnormalities
and increased the number of neural stem/progenitor cells with
supernumerary centrosomes (Onorati et al., 2016; Souza et al.,
2016; Garcez et al., 2017). Supernumerary foci of centriolar
proteins have also been found after ZIKV infection (Polynesia

strain PF-25013-18) in untransformed human retinal epithelia
RPE-1 cells and human CHME3 microglial cells, but not in
the NPC line ReN (Wolf et al., 2017). Onorati et al. (2016)
have proposed a model in which ZIKV infection activates
RIG-I-like receptors, cytoplasmic sensors of different forms of
dsRNA (which are present during the replication of ssRNA virus)
(Thompson and Locarnini, 2007). This would, in turn, cause the
relocation of phosphorylated TANK-binding kinase 1 (pTBK1)
from centrosomes to mitochondria - where pTBK1 could take
part in an innate antiviral immune response – resulting in mitotic
impairments in neocortical neuroepithelial stem cells and radial
glial cells (Onorati et al., 2016). Interestingly, the relocation
of pTBK1 to the mitochondria was also induced by human
cytomegalovirus (HCMV), another TORCH syndrome pathogen,
but not by DENV 2 (16681 strain), despite the fact that both
viruses induced apoptosis in human neocortical neuroepithelial
stem cells derived from prenatal specimens (Onorati et al., 2016).
The importance of ZIKV-induced centrosomal abnormalities was
reinforced by recent findings from Gabriel et al. (Gabriel et al.,
2017), who suggested a link between centrosomal structural
defects in ZIKV-infected human NPC and the premature
differentiation of NPC, which would result in the depletion of the
NPC pool.

Mechanisms of ZIKV Entry in Human Cells and the
Antiviral Response
Although the knowledge of the cell biology of ZIKV is still scarce,
recent advances have provided insights on the life cycle of this
pathogen. ZIKV can bind to target cells using adhesion factors
such as DC-SIGN and phosphatidylserine binding receptors
(Hamel et al., 2017) from which Axl appeared as the main
receptor for the entry in human skin fibroblasts (Hamel et al.,
2015), microglia (Meertens et al., 2017), astrocytes (Retallack
et al., 2016; Meertens et al., 2017) and blood-brain barrier
endothelial cells (Liu et al., 2016). Surprisingly, Axl does not
seem to be necessary for the entry of ZIKV in NPC and cerebral
organoids (Wells et al., 2016; Meertens et al., 2017), despite the
high expression of this receptor in NSC and NPC (Cugola et al.,
2016; Liu et al., 2016; Nowakowski et al., 2016; Onorati et al.,
2016; Meertens et al., 2017). Replication and assembly of progeny
virions of ZIKV take place onto modified membranes derived
from the endoplasmic reticulum. Thus, ZIKV-infected cells
exhibit the characteristic ultrastructural alterations of flavivirus-
infected cells (Dick, 1952; Offerdahl et al., 2017). In addition,
ZIKV infection provokes changes in the pattern of cellular and
viral RNA methylation (Lichinchi et al., 2016) and induces a
major impact on the transcriptome of the host cell (Rolfe et al.,
2016).

It has been shown that ZIKV (MR766) infection increases
the expression of Toll-like receptor 3 (TLR3) (Dang et al.,
2016), another innate immune receptor that recognizes dsRNA
(Thompson and Locarnini, 2007), in iPS-derived human cerebral
organoids and neurospheres. Treatment with the TLR3 agonist
poly(I:C) decreased the size of neurospheres in a similar fashion
to the infection with ZIKV. Nevertheless, treatment with a TLR3
competitive inhibitor only provided a modest protection against
the deleterious effects of ZIKV in neurospheres and cerebral
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organoids (Dang et al., 2016). In another study, it was shown that
while poly(I:C) induced the secretion of inflammatory mediators
by human NPC, infection with a ZIKV strain isolated in Puerto
Rico (ZIKV-PRVABC59) was not capable of inducing such a
response – despite inducing apoptosis. In addition, ZIKV did
not induce a type I Interferon response in NPC (did not induce
IFN-α secretion) and did not stimulate cytokine secretion in
THP-1 human monocytic cells (Hanners et al., 2016). ZIKV
infection (MR766) was also shown to downregulate several
immune response genes in a human microglial cell line (Tiwari
et al., 2017). Suppression of the innate immune response in
human CHME3 microglial cells infected with ZIKV was shown
to depend on the kinase activity of Axl (Meertens et al., 2017).

Other studies, however, have found that ZIKV is capable of
inducing an immune response in human fetal brain microglia
(Lum et al., 2017) and other cell types. Human embryonic stem
cells-derived cranial neural crest cells (CNCC) were induced
to secrete high concentrations of several cytokines and growth
factors, such as IL-6, PAI-1, LIF, and VEGF, after the infection
with ZIKV (MR766 or H/PF/2013 strains). CNCC supported
ZIKV replication and only a small fraction of the cells died after
infection (Bayless et al., 2016). Moreover, ZIKV (PF-25013-18)
induced the upregulation of the transcription factor IRF7 and
several interferon-stimulated genes in human skin fibroblasts
and lung epithelial A549 cells (Hamel et al., 2015; Frumence
et al., 2016). Interestingly, the pattern of antiviral response
induction in human astrocytes can differ between two ZIKV
strains (H/PF/2013 and African HD 78788 strains) (Hamel et al.,
2017).

Are There Any Differences in the Neurovirulence of
Different ZIKV Strains?
Taken together, current evidence indicates that ZIKV
preferentially infects NPC, inducing apoptosis, autophagy
and interfering with mitosis (Figure 5). ZIKV replicates in
NPC and the surviving cells produce the virus for several weeks
(Hanners et al., 2016). All strains of ZIKV currently tested
have been shown to induce nearly the same cytopathological
effects in NPC and few studies have addressed whether there are
mechanistic differences among the strains. Cugola et al. (2016)
showed that, while the African strain reduced the number of
neurons in non-human primate cerebral organoids, the Brazilian
strain failed to replicate and did not change the number of
neurons, suggesting that the Brazilian virus strain underwent
adaptive changes in human cells. Gabriel et al. (2017) have also
found some differences in the cellular outcome by comparing
the effects of two strains of ZIKV isolated during the recent
outbreaks and the African strain MR766 in iPSC-derived human
NPC and cerebral organoids. Furthermore, Zhang F. et al. (2016)
compared the effects of infecting iPSC-derived human NPC
with an Asian ZIKV isolate (FSS13025) or the African strain
(MR766). Both strains induced the same alterations in NPC
(cell death and decreased proliferation) and caused similar
gene expression changes: downregulation of genes involved
in cell cycle, DNA repair, and DNA replication, coupled to
the upregulation of genes involved in cell death and unfolded
protein responses. Comparing the effect of both strains, they

found that TP53 (coding for the tumor suppressor protein p53)
was significantly upregulated following the infection with the
Asian strain, but only marginally upregulated after the infection
with the African strain. Accordingly, p53 inhibitors reduced the
activation of caspase-3 more efficiently in NPC infected with
the Asian strain (Zhang F. et al., 2016). Activation of p53 has
also been reported after the infection of iPSC-derived human
NPC with a ZIKV strain isolated from French Polynesia (PF13).
The activation of p53 was not restricted to NPC expressing high
levels of viral antigens (Ghouzzi et al., 2016), suggesting that this
might be an early event or an indirect effect of ZIKV infection in
neighboring cells. Other cell types, such as microglia, astrocytes,
and endothelial cells, can also be infected (Delvecchio et al.,
2016; Lum et al., 2017; Meertens et al., 2017), but it is unknown
how the interplay among different cell types contribute to the
outcome of microcephaly.

Animal Models of ZIKV Infection
Immunodeficient Mouse Models
Several studies have used mice deficient in type I (A129 mice)
or type I/II interferon receptors (AG129) to establish models
of robust ZIKV infection in juvenile and adult animals. Aliota
et al. (2016a) showed that the subcutaneous injection of a French
Polynesian strain of ZIKV produced a lethal infection in AG129
mice. Animals exhibited early serum viremia and high viral loads
in several organs, which was accompanied by signs of illness
(including weight loss and lethargy) and brain degeneration. One
of the most striking observations was the extensive infiltration
of neutrophils in the brain. Animals had to be euthanized
7–8 days post-infection due to the rapid progression of the
disease. Zmurko et al. (2016) infected AG129 mice with the
African strain of ZIKV (MR766) and reported that the first
signs of disease appeared at 10 days after the intraperitoneal
inoculation. Mice developed acute neutrophilic encephalopathy
and had to be euthanized, on average, at 14 days post-inoculation.
Acute multifocal neutrophilic encephalitis, inflammatory lesions
in the cerebellum and multifocal neutrophilic myelitis were also
observed after the subcutaneous inoculation of AG129 mice
with the Malaysian strain of ZIKV (P 6-740). In this model,
all mice died within 21 days after the infection (Julander et al.,
2017). Similar findings were reported after the infection of
A129 mice with an African strain (MP1751) (Dowall et al.,
2016), a Cambodian strain (FSS13025) (Rossi et al., 2016),
or a French Polynesian strain of ZIKV (H/PF/2013) (Lazear
et al., 2016). Rossi et al. (2016) compared the effects of ZIKV
infection in both mouse strains and found that AG129 mice
had more severe neurological symptoms than A129 mice,
although there were no differences in other parameters, such
as time to death and weight change, suggesting that type II
interferon signaling might also influence certain aspects of
the disease. Lazear et al. (2016) established a lethal infection
in triple knockout mice deficient for IRF3, IRF5 and IRF7,
which virtually do not produce interferon-α/β, and showed that
these mice are more vulnerable to the intravenous injection
of ZIKV than A129 mice, although there were no differences
when the subcutaneous route was used. They also showed
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FIGURE 5 | Mechanisms of Zika virus (ZIKV)-induced neural damage. Schematic illustration of the main findings from in vitro and in vivo models of Zika virus
infection. Figure created in the Mind the Graph platform. NPCs: neural progenitor cells; NSCs: neural stem cells.

that the African strain MR766 was less pathogenic to A129
mice than the French Polynesian ZIKV strain (H/PF/2013).
Another study using triple knockout mice (IRF3, IRF5, and
IRF7 knockout) observed that ZIKV also has a tropism for
NPC and immature neurons in the adult brain (Li H. et al.,
2016). In this study, mice infected with a Cambodian strain
of ZIKV (FSS13025) through a retro-orbital injection exhibited
signs of viral illness and hindlimb weakness. The viral envelope
protein was detected mainly in the subventricular zone and in
the subgranular zone of the hippocampal dentate gyrus, two
neurogenic regions in adults. Immunohistochemical analysis
revealed that the infection increased the number of apoptotic
cells and reduced the number of proliferative cells in these two
neurogenic niches.

Immunocompetent Mouse Models
Several studies have demonstrated that immunocompetent
mouse strains (CD1, C57BL/6 and 129Sv/Ev mice) are resistant
to the subcutaneous or intraperitoneal inoculation of ZIKV and
do not develop signs of illness (Dowall et al., 2016; Lazear et al.,
2016; Rossi et al., 2016).

Immunocompetent mice only developed the disease when
infected during the neonatal period (Lazear et al., 2016;
Fernandes et al., 2017). For instance, van den Pol et al. (2017)
inoculated C57BL/6 mice on the day of birth with an Asian
strain of ZIKV (FSS13025) via the intraperitoneal route. They

found that astrocytes were the first targets of the virus in the
brain, which was followed by the infection of neurons. Infected
cells were also found in the spinal cord, cerebellum, retina and
different regions of the visual pathway. Infection was often lethal
and caused growth restriction and motor dysfunction.

Fernandes et al. (2017) inoculated newborn Swiss mice with
ZIKV (Brazilian strain SPH 2015), through the intracerebral or
the subcutaneous routes. Animals from both groups showed
neurological symptoms and severe illness, but the disease
progressed faster in the intracerebral group. Histopathological
findings were similar to what had been described in A129 and
AG129 juvenile and adult animals. An interesting observation
was that animals infected through the subcutaneous route
additionally exhibited myelopathy, although the brain injury
was less severe. Huang W. C. et al. (2016) infected C57BL/6
mice with ZIKV (MR766) at two different time points (either at
postnatal day 7 or 21) through the intracerebral route. Infection
of postnatal day 7 mice decreased the number of proliferating
cells in the ventricular zone and resulted in widespread neuronal
apoptosis and in the activation of microglia and astrocytes
throughout the brain at 4 days post-infection, when the animals
already exhibited neurological symptoms. At this time point,
21-day-old infected mice had severe paralysis, but the regional
pattern of neuronal apoptosis was different and less prominent.

Three studies have also reported the effects of injecting
ZIKV into the lateral ventricles of C57BL/6 and 129S1/SvImJ
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mouse embryos. Shao et al. (2016) observed postnatal growth
restriction and microcephaly in newborn pups infected with
a Mexican strain of ZIKV (MEX1-44) at embryonic day 14.5.
Microscopic analysis of their brains revealed cortical thinning,
massive neuronal death, glial activation and abnormal vascular
density and permeability. Li C. et al. (2016) injected an Asian
strain of ZIKV (SZ01) in the lateral ventricles of embryonic
day 13.5 mice. They confirmed the tropism of ZIKV for NPC,
although at a later time-point (5 days post-infection) almost all
cells in the brain were positive for ZIKV. They also found that
ZIKV induced the death of immature and mature neurons and
reduced NPC proliferation and differentiation, which resulted in
a thinner cortical layer. In both studies, there was no evidence
of disruption of cortical lamination and the global transcriptome
analyses of infected brains showed the upregulation of genes
involved in immune-response-related and apoptosis pathways
(Li C. et al., 2016; Shao et al., 2016). Wu et al. (2016), however,
found the virus mainly in the ventricular zone and striatum of
postnatal day 1 mice that were infected at embryonic day 13.5.

Thus far, animal models corroborate the evidence from
in vitro and ex vivo studies, indicating that NPC are highly
susceptible to ZIKV infection (Figure 5). Postmitotic neurons
were also shown to be targets of infection in the developing
brain and spinal cord of immunocompetent animals and in
the brain of young and adult transgenic mice that do not
mount an antiviral interferon response. Hindlimb paralysis
and neurological symptoms were found in almost all models.
Moreover, these models allowed the investigation of important
questions raised by clinical and epidemiological observations,
such as the link between ZIKV infection during pregnancy and
the occurrence of microcephaly, and the possibility of sexual
transmission of ZIKV.

Models of Sexual and Vertical Transmissions
The vertical transmission of ZIKV requires the ability of the
virus to cross the placental barrier, as well as the developing
or developed blood-brain barrier (BBB). Cugola et al. (2016)
infected C57BL/6 or SJL pregnant mice on day 10–13 of
gestation with a Brazilian strain of ZIKV. Newborns from the
SJL ZIKV-infected mice had a high viral load in the brain,
intra-uterine growth restriction (IUGR), cortical malformations
and ocular defects. These alterations, however, were not observed
in pups from C57BL/6 ZIKV-infected mice, indicating that
the virus was not able to cross the placenta in this mouse
strain, a finding that was supported by a recent study by van
den Pol et al. (2017). This is in contrast with the findings
of Wu et al. (2016), who injected ZIKV isolated from a
patient contaminated in Samoa in the peritoneal cavity of
pregnant C57BL/6 mice at embryonic day 13.5. They detected
viral RNA in 5 out of 9 placentas and found the virus
in radial glial cells localized in the ventricular zone of the
fetal brains, 3 days after infection. ZIKV infection reduced
the number of proliferating cells in the ventricular zone
and intermediate zone and decreased the outer perimeter of
the cortex of mice fetuses, although there was no difference
in relative thickness of cortical layers. Recently, Xavier-Neto
et al. (2017) showed a window of susceptibility between 5.5

and 9.5 days post coitum for ZIKV-induced teratogenesis
in FVB/NJ and C57BL/6J WT mice. Their model of ZIKV
(HS-2015-BA-01, isolated from a Brazilian patient) injection
through the jugular vein of pregnant mice caused gross and
generalized malformations, IUGR and neural tube defects in the
embryos/fetuses.

Another strategy was employed by Miner et al. (2016)
who crossed A129 female mice with wild-type (WT) males.
Pregnant mice were infected with ZIKV (H/PF/2013) through
the subcutaneous route on embryonic days 6.5 or 7.5. This
model resulted in high levels of ZIKV RNA in the placenta
(1000-fold greater than in the blood), placental abnormalities
(vascular injury and apoptosis of trophoblasts) and fetal demise
and resorption. IUGR and a large number of apoptotic cells in
the brain were found in the remaining fetuses. Alternatively, they
treated pregnant mice with a blocking anti-interferon alpha/beta
receptor subunit 1 (MAR1-5A3) 24 or 48 h before the inoculation
o ZIKV at embryonic days 6.5 or 7.5. This protocol did not
cause fetal demise but caused mild IUGR and placental and fetal
infection.

Another interesting observation from animal studies is that
the brain and testes are the main sites of ZIKV replication in
juvenile A129 and AG129 mice (Rossi et al., 2016) and that the
virus can persist in the brain and testes for up to 28 days after
infection in adult A129 mice (Lazear et al., 2016). Importantly,
ZIKV infection (African strain Dakar 41519, and Asian strain
H/PF/2013), although at lower levels, caused testis damage,
oligospermia and decreased sex hormone production in WT mice
treated with anti-Ifnar1 blocking antibodies (Govero et al., 2016).
Testicular damage was also observed after the intraperitoneal
inoculation of ZIKV (Asian strain SMGC-1) in A129 mice and
after the intratesticular injection of ZIKV in WT mice (Ma et al.,
2016). Future studies are warranted to determine whether the
testicles are affected in ZIKV-infected men.

The possibility of ZIKV transmission through sexual contact
was investigated by Yockey et al. (2016), who demonstrated that
ZIKV (Cambodian strain FSS13025) replicates in the vaginal tract
of WT mice after the intravaginal inoculation. However, while
WT mice did not develop disease, A129 mice developed hindlimb
paralysis and died within 9 days. However, it was shown that this
model of intravaginal infection in WT mice can lead to IUGR
if the maternal infection occurs during early pregnancy, even
in the absence of viremia. The presence of ZIKV in neurons
and glial cells in the fetal brain was also demonstrated. On
the other hand, vaginal ZIKV exposure of pregnant A129 mice
resulted in viremia, placental infection and fetal demise (early
infection at embryonic day 4.5) or severe IUGR (infection at
embryonic day 8.5). In conclusion, it has been shown that ZIKV
can infect the fetal brain and cause developmental abnormalities
(IUGR, for instance) in immunocompetent fetuses if there is
a high viral load in the maternal vagina and/or blood, or if
the virus is directly inoculated in the brain. Finally, Vermillion
et al. (2017) developed a model of transplacental transmission
in immunocompetent CD1 mice, in which ZIKV was directly
inoculated into the uterine wall at embryonic day 10. At postnatal
day 0, they found evidence of cortical thinning and microglial
activation in the brain of pups from ZIKV-infected dams.
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Non-human Primate Models and Alternative Models
Although the models that use animals that do not mount an
interferon response might not be useful for the screening of
compounds that target the components of this anti-viral pathway,
these models might be useful for testing other therapeutic
strategies. Indeed, there is evidence that the ZIKV NS5 protein
inhibits type I interferon response in human cells in a species-
specific fashion, which might explain why WT mice are more
resistant to the infection (Grant et al., 2016). Studies using
animal models, therefore, represent an important step for the
development of new therapies, especially when in conjunction
with in vitro and ex vivo models (Delvecchio et al., 2016;
Retallack et al., 2016; Zmurko et al., 2016; Julander et al.,
2017; Sacramento et al., 2017). This includes the utilization of
non-human primate models in preclinical translational studies.
It has been shown that the infection of Indian-origin rhesus
macaques with French Polynesian, South American, Puerto Rican
or Thai ZIKV strains, via the subcutaneous route, results in
transient viremia and uremia, prolonged presence of ZIKV RNA
in cerebrospinal fluid, lymph nodes and colorectal tissue, as
well as in the persistent presence of infectious ZIKV in the
semen (Dudley et al., 2016; Li X.F. et al., 2016; Osuna et al.,
2016; Aid et al., 2017). ZIKV infection induced T-cell responses
and protected non-human primates from ZIKV re-infection
or from heterologous ZIKV infection (Dudley et al., 2016;
Osuna et al., 2016). Pregnant macaques infected at mid-first
semester, however, exhibited persistent viremia, although the
amniotic fluid was negative for ZIKV (Dudley et al., 2016).
Moreover, Adams Waldorf et al. (2016) showed the vertical
transmission of ZIKV (strain FSS13025, from Cambodia) after
the subcutaneous inoculation of a pregnant pigtail macaque at
119 days of gestation. This model caused fetal brain lesions,
including white matter injury and gliosis, brain growth arrest
and an increase in the number of apoptotic cells in the
subependymal zone, a neurogenic niche. ZIKV RNA was detected
in both maternal and fetal brains and in the placenta at
6 weeks after inoculation, which might explain the persistent
maternal viremia observed in other studies. Models of ZIKV
infection in Cynomolgus monkeys have also been developed
(Koide et al., 2016; Osuna et al., 2016), showing that these
animals are susceptible to infection to ZIKV isolates from
Cambodia and Puerto Rico, but not to an African ZIKV strain
(IBH30656). In search of alternative and less expensive models,
Goodfellow et al. (2016) have demonstrated that ZIKV induced
a microcephaly like phenotype in chicken embryos. Finally, a
model of intraocular ZIKV inoculation in mice (van den Pol
et al., 2017) has already been developed and will permit the
investigation of ZIKV-induced dysfunction of the retina and
visual pathway.

ZIKV as a Causative Agent of Neurological
Pathologies
Taken together, the large amount of data generated over the last
years indicate that ZIKV can cause neural damage in an age-
dependent manner. The causal relationship between ZIKV and
birth defects has been inferred by using the Shepard’s criteria for
proof of human teratogenicity and the Bradford Hill’s criteria for

evidence of causation (Rasmussen et al., 2016). The publication
of several experimental studies in animals showing the maternal-
fetal transmission of ZIKV and the consequences of congenital
infection have reinforced this conclusion. By analyzing data from
epidemiologic and experimental studies, Krauer et al. (2017)
concluded that ZIKV is a trigger of GBS and found evidence of
causality between ZIKV and congenital abnormalities. However,
the full spectrum of neurological complications and the long-
term sequelae of ZIKV infection, even in the absence of
microcephaly, remain to be determined. The mechanisms
of neural damage at different developmental stages and the
contribution of potential cofactors (nutritional status, viral load,
previous infection with DENV, etc.) to the development of
adverse outcomes also deserve further investigation.

PUBLIC HEALTH RESPONSE AND
DISEASE CONTROL MEASURES

Declaration of a PHEIC
Since the beginning of the 21st century, a number of infectious
disease threats have emerged that were deemed to be such
a risk that they demanded a global response. Although the
transmission dynamics of the various pathogens causing these
global emergencies differed, the overarching principles of the
public health response were the same – development of policies
and procedures, risk communication, effective surveillance, and
use of disease control measures to mitigate the risk of infection in
the population. These principles formed the bulk of the advice by
the Emergency Committee on ZIKV to the Director-General of
the WHO when the association between ZIKV and microcephaly
and other neurological disorders (e.g., GBS) were declared to
be a PHEIC on 1 February 2016 (WHO, 2016e). In addition to
the public health measures, other key elements of that advice
were that Zika-affected countries should prepare health services;
research and development efforts should be increased; national
authorities should ensure the rapid and timely reporting and
sharing of information of public health importance relevant to
this PHEIC; and there should be no restrictions on travel and
trade as a result of the outbreak.

Policies and Protocols
Because of the novel and unanticipated nature of the public health
emergency relating to ZIKV, there were no specific pre-existing
policies and protocols to guide the public health response. In
December 2015, the European Centre for Disease Prevention
and Control published a rapid risk assessment on the unfolding
epidemic (ECDC, 2015) and, soon after, disease control agencies
around the world developed public health and clinical guidelines.
These guidelines were largely focused on women of reproductive
age, their partners, and their clinicians, providing advice on how
infection could be prevented, and on testing and management
in the event of possible exposure (Petersen et al., 2016; WHO,
2016b). Microbiological testing for ZIKV is not straightforward
and was not widely available at the outset of the epidemic, so the
development of laboratory guidelines was another early focus.
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Guidelines development accelerated following the WHO
announcement that the world was experiencing a PHEIC.
And as the scientific understanding of the risk and clinical
manifestations of ZIKV infection on unborn children was rapidly
evolving, guidelines required frequent updating. Over time, the
guidelines for various agencies became more consistent with one
another.

Surveillance
Surveillance activities for ZIKV in areas where transmission is
occurring focus on recording case numbers, complications of
the infection, and vectors. The objectives of the surveillance for
human cases are to monitor the geographical distribution and
temporal trend of infection; characterize disease presentation;
identify complications related to the infection; identify
non-vector borne routes of transmission; and monitor the
effectiveness of containment measures (WHO, 2016d). In
countries which are receptive to the virus but without local
transmission, the key surveillance objectives are to ascertain
imported cases and undertake vector monitoring. In countries
where there is no chance of local transmission by vectors, the
focus is on identifying imported cases.

The transmission dynamics of ZIKV mean that when it is
introduced to an immunologically naive population, an epidemic
ensues until a level of population immunity is reached that sees
the end of the outbreak. Modeling shows that this period will last
approximately 3 years, with a further decade or more before large
epidemics are once again possible (Ferguson et al., 2016). It is
important for a country to know where on the epidemic curve
it is at any point in time, so that the risk to the population is
understood and communicated to them, control measures can
be instituted, and planning health services undertaken. Although
the mild nature of ZIKV disease means that few will come to
the attention of health authorities, an understanding of trends
can be observed if a robust surveillance system is in place that
allows counting of the relatively small proportion of cases that
do seek medical help. The more robust systems are those where
notification of ZIKV infection to public health authorities is
included in the list of reportable infectious diseases mandated
by law. Population-based serological studies can be undertaken
in Zika-affected countries to better understand the level of
population immunity at a point in time.

Estimating the risk of complications from ZIKV is difficult
as baseline data for benchmarking are often unavailable and
neither accurate denominator data (number of mothers infected),
nor numerator data (number of congenital malformations), is
available in most of those countries directly affected by ZIKV.
Robust surveillance systems for measuring rates of congenital
anomalies do exist but tend to occur in countries where ZIKV is
not endemic. One such system is the US Zika Pregnancy Registry
(USZPR), which provides perhaps the most accurate estimate of
risk – of 442 women with completed pregnancies and laboratory
evidence of recent Zika infection, 6% of fetuses or infants overall
had one or more brain abnormalities and 4% had a finding of
microcephaly (Honein et al., 2017). The rate was the same for
symptomatic as for asymptomatic women and by far the greatest
risk was for women who were infected in their first trimester.

The complication of GBS is rare, estimated to be 2.4 cases
per 10,000 people infected during the 2013–2014 outbreak in
French Polynesia (Cao-Lormeau et al., 2016). Estimates of the
incidence of GBS from a number of Central and South American
countries affected by ZIKV range from 2.0 to 9.8-fold higher
than pre-epidemic baselines, which pose a significant burden to
communities and health systems (Dos Santos et al., 2016).

The aims of vector surveillance are to determine when and
where competent vectors are active in a country, where vector
control efforts should be focused, and the effectiveness of vector
control programs. As a consequence of dengue fever epidemics,
most affected countries can rely on existing vector control
programs. However, such programs are resource-intensive and
need to be well-planned to ensure an efficient use of resources.
Trapping sites should be placed to ensure representativeness of
the geographical area, and fixed in place to allow determination
of changes in mosquito densities over time (WHO, 2016f).
Sampling should involve counting of both larval and adult
forms of known mosquito vectors to help inform the use
of larvicides, adulticides or both. Ideally, synthesis of all the
information should be combined with geographic information
systems (GIS) data to allow prediction of disease transmission
scenarios and focus risk communication to the public. Another
important component is the periodic determination of insecticide
sensitivity to help selection of authorized biocides used in control
efforts.

Communication to High-Risk Groups
Raising awareness of the risk of ZIKV infection to those groups
at risk is of critical importance. The population groups to be
targeted will vary according to whether they are in a region
or country where there is ZIKV activity. In those areas where
ZIKV transmission is occurring, the entire population needs to
be aware of the disease and vigilant of the risk in order for
them to be motivated to undertake risk mitigation measures.
Apart from the general public, specific stakeholder groups in the
risk communication strategy should include pregnant women,
women of reproductive age and their partners, community
organizations, schools, health care workers, the media, local and
international organizations involved in reproductive health, and
local policymakers (WHO, 2016c). Key messages should include
prevention of unintended pregnancies by the use of reversible
contraception methods; using insect repellents, mosquito nets
and other mosquito avoidance measures; and assisting in local
vector control activities, such as reducing the mosquito breeding
sites on private property. This last issue is essential, because the
majority of breeding sites of Ae. albopictus and Ae. aegypti in
urbanized areas are usually found on private property, where the
simple preventive measure of water source elimination by owners
can significantly reduce the risk.

The advice of health ministries of some Zika-countries for
women to defer pregnancy for considerable periods to lessen
the risk to their newborns is unprecedented and controversial.
Apart from the attendant population planning risks of a distorted
population profile resulting from a diminished birth cohort, some
of these countries have high rates of unplanned pregnancies,
strict abortion laws, a lack of sexuality education programs in
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schools, and poor access to contraception, leading to difficulties
in implementation of this policy (Ahmed, 2016).

Because of the rarity of the complication of GBS, raising
awareness among clinicians is likely to be the more effective risk
communication strategy. However, the fact that cases may have
mild, or no, symptoms of ZIKV infection preceding it means that
clinicians won’t necessarily be aided by a clinical prompt, hence
delays in diagnosis are likely.

In countries where ZIKV is not active and not receptive to the
virus, the focus of awareness-raising is on those citizens planning
to travel to Zika-affected areas, in particular, to individuals or
couples who are pregnant or planning to become pregnant.
Avoiding or deferring travel is advised, and if the person does
decide to travel, the messages focus on mosquito avoidance and
contraception advice, and symptoms to be aware of on return.
Again, the high rate of asymptomatic infection means that the
advice needs to relate to anyone traveling to endemic areas, not
just those who develop symptoms. Based on available evidence of
risk of sexual transmission of ZIKV, the WHO recommends men
and women returning from areas where transmission of ZIKV
is known to occur to abstain from unprotected sex for at least
6 months upon return to prevent ZIKV infection through sexual
transmission and that women who are planning a pregnancy
wait at least 6 months before trying to conceive to ensure that
possible ZIKV infection has cleared (WHO, 2016b). Disease
control agencies from individual countries advise a lesser risk
period for women to defer pregnancy following their (or their
partner’s) return from Zika-affected areas (CDC, 2017).

A third category includes those countries where ZIKV
infection is not endemic but are receptive to the virus as they
harbor competent vectors. The key population health messages
in these countries relate to raising awareness of the symptoms
of ZIKV infection so that cases are ascertained early and
disease control measures rapidly instigated. Travelers from these
countries to endemic areas need to be especially aware of risk
mitigation measures whilst traveling to endemic areas, as well
as symptoms of the infection, as they are at risk of triggering an
outbreak on their return.

Disease Control Measures
Disease control methods available for the fight against ZIKV are
limited. There is neither an effective vaccine against the virus,
nor anti-viral drugs to reduce the viremic period during which
a competent vector with hematophagic behavior can amplify
the disease. Vector control measures are, therefore, crucial and
reduction of contact between hosts and vectors form the basis of
disease control strategies worldwide.

Two broad types of complementary vector control
strategies can be applied. First, individuals must take
personal responsibility for avoiding mosquito bites and,
second, government and non-government organizations must
implement vector surveillance and control programs at global,
national and local levels.

Recently, innovative methods to reduce mosquito populations
have been shown great promise in laboratory and field conditions.
Examples include the employment of insect sterile techniques
(Alphey et al., 2010), introduction of Wolbachia strains (Jeffries

and Walker, 2016) and genetically modified organisms (Beisel
and Boëte, 2013), and these may be introduced in future years
as adjuncts to conventional mosquito control programs.

In countries that do not have Zika activity but harbor
competent vectors of the disease, disinsection of arriving
airplanes is an important consideration. The WHO recommends
that these countries undertake a risk assessment, and if it
concludes that a disinsection program is indicated, that it should
be conducted according to standard WHO recommendations
(WHO, 2016a).

Risk of Transmission from Blood Transfusion
A study of blood donors during the outbreak in French Polynesia,
which found that 3% were positive for ZIKV by PCR while
asymptomatic (Musso et al., 2014), has led to concerns about the
risk of transmission of ZIKV infection during the transfusion of
blood products. The risk is small, however, with only one report
of infection caused by transfusion of platelets (Motta et al., 2016).

Some countries require blood donors who have traveled to
Zika-affected areas defer their donation for a period after their
return or after any sexual contact with a known case (CDNA,
2016). Tests to screen blood donations for ZIKV are available
and, despite them not being licensed by the United States Food
and Drug Administration (US FDA), it recommends screening
all donations in the US and the removal of any positive samples
from the blood supply (FDA, 2016).

PERSPECTIVES

Vaccines
Vaccines for several flaviviruses have been produced during
the past decades, some of them being already in the market,
such as those for YF, tick-borne encephalitis (TBE), or WNF.
These vaccines have been produced using different strategies:
inactivated or live-attenuated viruses, recombinant proteins
and recombinant subviral particles expressed in different
heterologous systems, chimeric backbone viruses, or naked
cDNA, among others (Martin-Acebes and Saiz, 2012). Thus,
after the explosive spread of ZIKV in the Americas that quickly
raised social and health worldwide concern because of its possible
association with severe neurological pathologies (Blazquez and
Saiz, 2016), it was reasonable to think that similar strategies can
be applied to ZIKV (Saiz et al., 2016).

In this way, an alum-adjuvanted whole inactivated ZIKV
(ZPIV) vaccine candidate recently showed complete protection
against detectable viremia in challenged mice (Larocca et al.,
2016) and later on in rhesus macaques (Abbink et al., 2016).
On the other hand, although live attenuated vaccines are in
widespread use for several viral infections, they are usually
contraindicated for pregnant women, and in some instances for
children, and therefore, they are not a primary target for ZIKV,
even though WHO has reported no evidence of increased adverse
pregnancy outcomes when licensed vaccines of this kind have
been used (WHO, 2014). Similar issues apply for recombinant
heterologous viral vectored vaccines and, thus, none of them
have been licensed to date, even though a vaccine candidate
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that incorporates ZIKV pre-membrane and envelope (prM-E)
proteins into a rhesus adenovirus serotype 52 viral vector has
recently shown complete protection in challenged monkeys
4 weeks after vaccination with a single dose (Abbink et al., 2016).

On the other hand, until now, and though DNA vaccine
technology has been available for many years, no such a human
vaccine has been licensed; however, a DNA-ZIKV expressing the
full-length ZIKV prM-E proteins induced complete protection
against viremia both in mice (Larocca et al., 2016) and rhesus
macaques (Abbink et al., 2016). Likewise, a recombinant vaccine
ZIKV/JEV prM-E DNA constructs, in which the ZIKV prM
signal sequence was replaced with the analogous JEV sequence to
improve expression, has shown high levels of protection against
viremia in challenged rhesus macaques (Dowd et al., 2016b). Even
more, adoptive transfer of purified IgG from mice vaccinated
with a ZIKV plasmid DNA vaccine conferred passive protection
(Larocca et al., 2016), as did those from mice and rhesus
macaques inoculated with an inactivated ZIKV vaccine (Abbink
et al., 2016). Similarly, mice treated with a monoclonal antibody
against the Domain III of ZIKV-E protein were protected from
lethal ZIKV infection (Stettler et al., 2016).

As today, more than 30 vaccine candidates are in active
preclinical development, and three have been already approved
by the FDA to enter phase I clinical trials (WHO, 2017).
NCT02809443 (GLS-5700, Inovio Pharmaceuticals and GeneOne
Life Sciences) is a synthetic DNA plasmid vaccine which
encodes for the pM-E regions of ZIKV that is being tested
in healthy volunteers. This candidate is also in a phase
I clinical trial in endemic areas in DENV seropositive
adults (NCT02963909). NCT02840487 (VRC-ZKADNA085-00-
VP, Vaccine Research Center, NIAID) is also composed of
a single closed-circular DNA plasmid that encodes the prM-
E proteins from ZIKV. NCT02963909 (NIAID) is an alum
adjuvanted ZIKV purified inactivated vaccine (ZPIV) that has
entered clinical trial in healthy flavivirus-naïve and flavivirus-
primed subjects.

However, due to the characteristics of ZIKV infection,
several specific concerns should be kept in mind when
developing vaccine candidates against the virus. Thereby, given
the possible association of the viral infection with congenital
abnormalities (Blazquez and Saiz, 2016), the primary target
of the vaccine would be pregnant women and women of
childbearing age, although men may also be a target, as ZIKV
has been detected in semen pointing to a sexual transmission
route. In addition, there are also concerns over the possible
interaction of preexisting flavivirus immunity with neutralization
and/or enhancement, since several flavivirus cocirculate in the
ZIKV endemic areas, including DENV for which an antibody
dependent enhancement (ADE) effect has been described.
Indeed, the relationships between the immune response to ZIKV
and previous DENV infection has been recently demonstrated
(Dejnirattisai et al., 2016; Stettler et al., 2016). However, no
such ADE effect has been observed in ZIKV infected animal
models challenge with WNV (Vázquez-Calvo et al., 2017a).
Based on an ecological study, a possible protective effect of YZ
fever vaccination has been discussed (De Goes Cavalcanti et al.,
2016).

Furthermore, as there is no guarantee that experimental
promising results will be reflected in the clinical evaluation of
vaccine candidates, and based on the previous experience from
the Ebola epidemic, where substantial delays occurred before
the stakeholders established the necessary agreements, WHO has
launched a target product profile (TPP) describing the preferred
and minimal product characteristics for a vaccine targeted to
the proposed priority populations (Vannice et al., 2016), which
certainly will have to be updated in the coming months once
new data are available. In fact, there are tests that take months
to be evaluated (stability, neurovirulence, toxicity, etc.), but
that should be addressed even under emergency circumstances.
Moreover, as noted by Dittmer (2016), besides the technical
and ethical aspects, several questions arise regarding ZIKV
vaccine campaign implementation that should be considered: Do
we need a sophisticated expensive vaccine? Is it economically
worthy to develop a vaccine and large-scale clinical trials?
Moreover, although vaccines potentially provide powerful tools
for the control of viral pathogens, as mentioned before, the
development of possible adverse effects derived from ADE
of infection of related flavivirus (i.e., DENV) should also be
extensively considered before starting large-scale vaccination
campaigns.

Antivirals
As mentioned before, nowadays there are no approved specific
antiviral agents against any flavivirus (Menendez-Arias and
Richman, 2014), and treatment is generally directed to symptom
relief with analgesics and antipyretic. However, in the past
months, several drugs have been tested in vitro and in vivo as
antiviral candidates (Saiz and Martin-Acebes, 2017), including
the screening of different compounds libraries, such those already
approved by the FDA, and the repurposing of drugs already used
in clinic for other diseases, many of which are broad spectrum
molecules.

For instances, different nucleoside analogs/derivatives that
target viral polymerases, such as 2′-C-methylated nucleosides,
have shown to inhibit ZIKV multiplication in cell culture (Eyer
et al., 2016; Zmurko et al., 2016; Hercik et al., 2017), as
did Sofosbuvir and BCX4430 (Bullard-Feibelman et al., 2017;
Julander et al., 2017; Sacramento et al., 2017), which also induced
greater survival rates in treated experimental immunodeficient
mice (Bullard-Feibelman et al., 2017; Julander et al., 2017).
Likewise, the pyrimidine synthesis inhibitors NITD008, CID
91632869, finasteride, brequinar, 6-azauridine, gemcitabine, and
5-fluorouracil reduced viral multiplication to different levels
(Pascoalino et al., 2016; Adcock et al., 2017; Kuivanen et al., 2017).
Even more, NITD008 improved survival rates in treated mice
infected with ZIKV (Deng et al., 2016). In addition, by means of
a high-throughput screening of over 40,000 compounds, it has
been shown that non-peptidic small molecules targeting other
viral proteins, such as the N2B-NS3 trypsin-like serine-protease,
were capable of inhibiting ZIKV multiplication in cell culture
(Lee et al., 2017).

On the other hand, it has been recently reported that
passive transfer of human neutralizing antibodies to pregnant
mice suppressed ZIKV replication and prevent microcephaly
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(Sapparapu et al., 2016; Wang et al., 2017), as did a monoclonal
antibody against the Domain III of ZIKV-E protein protected
against lethal ZIKV infection in a murine model (Stettler et al.,
2016). Even more, compounds present in many natural products
that also target the viral particle, such as the polyphenols
epigallocatechin gallate and delphinidin chloride, also exhibit
anti-ZIKV activity, probably through a virucidal effect (Carneiro
et al., 2016; Vázquez-Calvo et al., 2017b).

Besides drugs targeting viral components, those directed
against cellular factors implicated in the viral life cycle have also
been assayed, as they are less prone to induce the emergence
of resistant virus. In this line, by screening different libraries
and bioactive molecules and by drug repurposing, different
inhibitors of ZIKV infection were uncover, including the fusion
inhibitors SaliPhe, monesin, and niclosamide (Xu M. et al., 2016;
Adcock et al., 2017; Kuivanen et al., 2017), as well as others
molecules that affect different cellular pathways, like bortzetomib,
sertraline (Barrows et al., 2016), palonosetron (Pascoalino et al.,
2016), tenovir-1 (Kuivanen et al., 2017), obatoclax (Rausch
et al., 2017), PHA-690509, and emirascan (Xu M. et al.,
2016). The immunosuppressants cyclosporine A, mycophenolic
acid, and azathiophine have also been tested with promising
results (Barrows et al., 2016). Likewise, hypolipidemic drugs
like lovastatin, PF-429242, fatostatin, nordihydroguaiaretic acid,
and tetra-O methyl nordihydroguaiaretic acid have demonstrated
inhibitory activity against ZIKV in cell culture (Pascoalino et al.,
2016; Merino-Ramos et al., 2017).

Finally, antiparasitics and antimalarials, such as ivermectin,
chloroquine, quinacrine, mefloquine, GSK-36796, and
pyrimethamine (Barrows et al., 2016; Delvecchio et al., 2016;

Balasubramanian et al., 2017), as well as antibiotics like
nanchagmycin, daptomycin and kitasmycin (Barrows et al., 2016;
Pascoalino et al., 2016; Rausch et al., 2017) have also been shown
to reduce ZIKV multiplication. Nevertheless, and despite the
great effort made by the scientific community, it will take time
until any drug against ZIKV will be commercially available.
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