45 research outputs found

    The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance

    Get PDF
    We show that the mouse macrophage-restricted F4/80 protein is not required for the development and distribution of tissue macrophages but is involved in the generation of antigen-specific efferent regulatory T (T reg) cells that suppress antigen-specific immunity. In the in vivo anterior chamber (a.c.)–associated immune deviation (ACAID) model of peripheral tolerance, a.c. inoculation of antigen into F4/80−/− mice was unable to induce efferent T reg cells and suppress delayed-type hypersensitivity (DTH) responses. Moreover, the use of anti-F4/80 mAb and F4/80−/− APCs in an in vitro ACAID model showed that all APC cells in the culture must be able to express F4/80 protein if efferent T reg cells were to be generated. In a low-dose oral tolerance model, WT but not F4/80−/− mice generated an efferent CD8+ T reg cell population that suppressed an antigen-specific DTH response. Peripheral tolerance was restored in F4/80−/− mice by adoptive transfer of F4/80+ APCs in both peripheral tolerance models, indicating a central role for the F4/80 molecule in the generation of efferent CD8+ T reg cells

    Use of the osmotic membrane bioreactor for the management of tannery wastewater using absorption liquid waste as draw solution

    Full text link
    [EN] The performance of an osmotic membrane bioreactor (OMBR) for treating tannery wastewater at laboratory scale has been evaluated in this study. The forward osmosis (FO) membrane tested was CTA-NW from HTI. As draw solution, actual waste water from an absorption column for ammonia separation, which consists mainly of ammonium sulphate was used. The study was focused on the salt reverse flux during the OMBR operation, membrane water flux, biomass characteristics and membrane fouling. Regarding membrane water flux change with the time, the measured values diminished from 3.44 to 0.72 LMH due to the membrane fouling and the salt accumulation in the biological reactor. The stable mixed liquor conductivity value at the end of the experiment was 29.8 mS·cm¿1. The chemical oxygen demand (COD) removal efficiencies were maintained near 80% until the first 50 days of operation, considering the soluble COD in the reactor instead of the COD in the membrane permeate for the performance calculation. Thence, COD removal efficiencies decreased progressively due to the accumulation of non degradable COD coming from the tannery wastewater. Concerning to the membrane fouling, FESEM/EDX analysis corroborated that organic fouling was predominant on the membrane active layer.This study was supported by the Spanish Ministry of Economy and Competitiveness through the project RTC-2015-3582-5-AR.Lujan Facundo, MJ.; Mendoza Roca, JA.; Soler Cabezas, JL.; Bes-Piá, M.; Vincent Vela, MC.; Pastor Alcañiz, L. (2019). Use of the osmotic membrane bioreactor for the management of tannery wastewater using absorption liquid waste as draw solution. Process Safety and Environmental Protection. 131:292-299. https://doi.org/10.1016/j.psep.2019.09.024S29229913

    Interleukin-17A Mediates Acquired Immunity to Pneumococcal Colonization

    Get PDF
    Although anticapsular antibodies confer serotype-specific immunity to pneumococci, children increase their ability to clear colonization before these antibodies appear, suggesting involvement of other mechanisms. We previously reported that intranasal immunization of mice with pneumococci confers CD4+ T cell–dependent, antibody- and serotype-independent protection against colonization. Here we show that this immunity, rather than preventing initiation of carriage, accelerates clearance over several days, accompanied by neutrophilic infiltration of the nasopharyngeal mucosa. Adoptive transfer of immune CD4+ T cells was sufficient to confer immunity to naïve RAG1−/− mice. A critical role of interleukin (IL)-17A was demonstrated: mice lacking interferon-γ or IL-4 were protected, but not mice lacking IL-17A receptor or mice with neutrophil depletion. In vitro expression of IL-17A in response to pneumococci was assayed: lymphoid tissue from vaccinated mice expressed significantly more IL-17A than controls, and IL-17A expression from peripheral blood samples from immunized mice predicted protection in vivo. IL-17A was elicited by pneumococcal stimulation of tonsillar cells of children or adult blood but not cord blood. IL-17A increased pneumococcal killing by human neutrophils both in the absence and in the presence of antibodies and complement. We conclude that IL-17A mediates pneumococcal immunity in mice and probably in humans; its elicitation in vitro could help in the development of candidate pneumococcal vaccines

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

    Get PDF
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Tolerogenic APC Generate CD8 +

    No full text

    Development and pharmacological validation of novel methods of B cell activation in rat whole blood

    Get PDF
    AbstractIntroductionWhole blood functional assays are pharmacologically relevant in the drug discovery process to evaluate potency in a relevant biological matrix, to support establishment of PK/PD relationships and to aid in human dose predictions. However development of B cell activation assays by BCR ligation in rat whole blood has not been previously described. The aim of the present study was to develop novel methods of B cell activation in rat whole blood.MethodsB cell activation in rat whole blood was evaluated by measuring CD86 up-regulation via flow cytometry. Rat B cells in whole blood were stimulated with dextran-coupled anti-IgD or a combination of anti-IgD and TLR9 agonist. BTK, SYK, and PI3Kδ inhibitors were added to rat whole blood prior to activation with dextran-coupled anti-IgD or anti-IgD and TLR9 agonist combination for pharmacological validation of the assay.ResultsBoth methods of stimulation in rat whole blood evoked robust B cell activation in a uni-modal fashion. Highly selective inhibitors of BTK, SYK, and PI3Kδ dose-dependently attenuated B cell activity evoked by both dextran-coupled anti-IgD and combined anti-IgD and TLR9 agonist. Compound potencies and rank order determined by the two assays were comparable.DiscussionTwo novel methods were developed to stimulate B cells in rat whole blood, that have the potential to be used to support drug discovery efforts in the therapeutic targeting of B cells. Furthermore, we pharmacologically validated these whole blood assays using highly selective inhibitors of BTK, SYK, and PI3Kδ, signaling kinases which are downstream of the B cell receptor
    corecore