319 research outputs found

    Mott Insulator-Superfluid Transition in a Generalized Bose-Hubbard Model with Topologically Non-trivial Flat-Band

    Full text link
    In this paper, we studied a generalized Bose-Hubbard model on a checkerboard lattice with topologically nontrivial flat-band. We used mean-field method to decouple the model Hamiltonian and obtained phase diagram by Landau theory of second-order phase transition. We further calculate the energy gap and the dispersion of quasi-particle or quasi-hole in Mott insulator state and found that in strong interaction limit the quasi-particles or the quasi-holes also have flat bands.Comment: 13 figures, 9 page

    Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Get PDF
    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.publishedVersio

    Raw Garlic Consumption and Risk of Liver Cancer: A Population-Based Case-Control Study in Eastern China.

    Get PDF
    Although the major risk factors for liver cancer have been established, preventive factors for liver cancer have not been fully explored. We evaluated the association between raw garlic consumption and liver cancer in a large population-based case-control study in Eastern China. The study was conducted in Jiangsu, China, from 2003 to 2010. A total of 2011 incident liver cancer cases and 7933 randomly selected population-controls were interviewed. Epidemiological data including raw garlic intake and other exposures were collected, and serum markers of hepatitis B virus (HBV) and hepatitis C virus (HCV) infection were assayed. Overall, eating raw garlic twice or more per week was inversely associated with liver cancer, with an adjusted odds ratio (aOR) of 0.77 (95% confidence interval (CI): 0.62-0.96) compared to those ingesting no raw garlic or less than twice per week. In stratified analyses, high intake of raw garlic was inversely associated with liver cancer among Hepatitis B surface antigen (HBsAg) negative individuals, frequent alcohol drinkers, those having history of eating mold-contaminated food or drinking raw water, and those without family history of liver cancer. Marginal interactions on an additive scale were observed between low raw garlic intake and HBsAg positivity (attributable proportion due to interaction (AP) = 0.31, 95% CI: -0.01-0.62) and heavy alcohol drinking (AP = 0.28, 95% CI: 0.00-0.57). Raw garlic consumption is inversely associated with liver cancer. Such an association shed some light on the potential etiologic role of garlic intake on liver cancer, which in turn might provide a possible dietary intervention to reduce liver cancer in Chinese population

    Polyphenol-rich oolong tea alleviates obesity and modulates gut microbiota in high-fat diet-fed mice

    Get PDF
    Obesity is a major public health issue worldwide. Oolong tea (OT), which is partially fermented from Camellia sinensis leaves, has proven health benefits and potential preventive applications in multiple studies. However, research on the role of OT in obesity prevention and potential mechanisms is still limited. The purpose of this study was to investigate the modulatory effects of OT intervention on high-fat diet (HFD)-induced obesity and gut microbiota dysbiosis using an obese mouse model. Our results showed that 8-week OT supplementation with 93.94% polyphenols significantly decreased body weight gain, adipose tissue mass, and serum levels of triglyceride (2.60 mmol/L), cholesterol (5.49 mmol/L), and low-density lipoprotein cholesterol (0.61 mmol/L) in HFD-fed mice. Meanwhile, OT intervention was observed to improve fat accumulation, hepatic damage, glucose intolerance, and endotoxemia and alleviate inflammation by decreasing the levels of pro-inflammatory factors. OT also upregulated the expression of genes including Srebf1, Ppara, Lxra, Pgc1a, and Hsl and downregulated the expression of genes including Leptin, Il-6, and Il-1b. In addition, the gut dysbiosis characterized by decreased flora diversity and increased Firmicutes/Bacteroidetes ratio in obese mice was recovered by OT intervention. Certain differentially abundant microbes caused by HFD feeding, including Enterococcus, Intestinimonas, Blautia, and Bilophila, were also improved by OT treatment. This study demonstrated that OT, as a novel resource of dietary polyphenols, exhibited a protective effect on HFD-induced obesity and gut microbiota disorder

    Graphene-induced unique polarization tuning properties of excessively tilted fiber grating

    Get PDF
    By exploiting the polarization-sensitive coupling effect of graphene with the optical mode, we investigate the polarization modulation properties of a hybrid waveguide of graphene-integrated excessively tilted fiber grating (Ex-TFG). The theoretical analysis and experimental results demonstrate that the real and imaginary parts of complex refractive index of fewlayer graphene exhibit different effects on transverse electric (TE) and transverse magnetic (TM) cladding modes of the Ex-TFG, enabling stronger absorption in the TE mode and more wavelength shift in the TM mode. Furthermore, the surrounding refractive index can modulate the complex optical constant of graphene and then the polarization properties of the hybrid waveguide, such as resonant wavelength and peak intensity. Therefore, the unique polarization tuning property induced by the integration of the graphene layer with Ex-TFG may endow potential applications in all-in-one fiber modulators, fiber lasers, and biochemical sensors

    Angiotensin II and the ERK pathway mediate the induction of myocardin by hypoxia in cultured rat neonatal cardiomyocytes

    Get PDF
    Hypoxic injury to cardiomyocytes is a stress that causes cardiac pathology through cardiac-restricted gene expression. SRF (serum-response factor) and myocardin are important for cardiomyocyte growth and differentiation in response to myocardial injuries. Previous studies have indicated that AngII (angiotensin II) stimulates both myocardin expression and cardiomyocyte hypertrophy. In the present study, we evaluated the expression of myocardin and AngII after hypoxia in regulating gene transcription in neonatal cardiomyocytes. Cultured rat neonatal cardiomyocytes were subjected to hypoxia, and the expression of myocardin and AngII were evaluated. Different signal transduction pathway inhibitors were used to identify the pathway(s) responsible for myocardin expression. An EMSA (electrophoretic mobility-shift assay) was used to identify myocardin/SRF binding, and a luciferase assay was used to identify transcriptional activity of myocardin/SRF in neonatal cardiomyocytes. Both myocardin and AngII expression increased after hypoxia, with AngII appearing at an earlier time point than myocardin. Myocardin expression was stimulated by AngII and ERK (extracellular-signal-regulated kinase) phosphorylation, but was suppressed by an ARB (AngII typeĀ 1 receptor blocker), an ERK pathway inhibitor and myocardin siRNA (small interfering RNA). AngII increased both myocardin expression and transcription in neonatal cardiomyocytes. Binding of myocardin/SRF was identified using an EMSA, and a luciferase assay indicated the transcription of myocardin/SRF in neonatal cardiomyocytes. Increased BNP (B-type natriuretic peptide), MHC (myosin heavy chain) and [3H]proline incorporation into cardiomyocytes was identified after hypoxia with the presence of myocardin in hypertrophic cardiomyocytes. In conclusion, hypoxia in cardiomyocytes increased myocardin expression, which is mediated by the induction of AngII and the ERK pathway, to cause cardiomyocyte hypertrophy. Myocardial hypertrophy was identified as an increase in transcriptional activities, elevated hypertrophic and cardiomyocyte phenotype markers, and morphological hypertrophic changes in cardiomyocytes

    2D Black Phosphorus: from Preparation to Applications for Electrochemical Energy Storage

    Get PDF
    Black phosphorus (BP) is rediscovered as a 2D layered material. Since its first isolation in 2014, 2D BP has triggered tremendous interest in the fields of condensed matter physics, chemistry, and materials science. Given its unique puckered monolayer geometry, 2D BP displays many unprecedented properties and is being explored for use in numerous applications. The flexibility, large surface area, and good electric conductivity of 2D BP make it a promising electrode material for electrochemical energy storage devices (EESDs). Here, the experimental and theoretical progress of 2D BP is presented on the basis of its preparation methods. The structural and physiochemical properties, air instability, passivation, and EESD applications of 2D BP are discussed systemically. Specifically, the latest research findings on utilizing 2D BP in EESDs, such as lithiumā€ion batteries, supercapacitors, and emerging technologies (lithiumā€“sulfur batteries, magnesiumā€ion batteries, and sodiumā€ion batteries), are summarized. On the basis of the current progress, a few personal perspectives on the existing challenges and future research directions in this developing field are provided
    • ā€¦
    corecore