14 research outputs found

    Mouse Chromosome 11

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd

    Effects of transmission gear selection on tractor performance and fuel costs during deep tillage operations

    Get PDF
    Deep tillage operations required to alleviate soil compaction common in the Southeastern US remain energy intensive and expensive. Equipment performance and in-field efficiency are two variables that can be improved to minimize fuel consumption and ultimately reduce input costs for crop production. The objective of this study was to investigate the effects of transmission gear selection on fuel costs, draft, and other equipment performance variables using two deep tillage implements. Three different transmission gears were selected which represented slow, normal, and fast operating speeds for two typical in-row, integral subsoilers (KMC generation I rip-strip and Bigham Brothers ParatillTM). Tractor fuel consumption, slip, axle torque, and engine speed were measured in real-time along with transverse and vertical draft forces. Results indicated a 105% increase in fuel consumption rate, a 28% increase in implement draft, and a 255% increase in power between the slow and fast speed for the ParatillTM. The KMC showed a 115% increase in fuel consumption rate, a 37% increase in implement draft, and a 283% increase in power between the slow and fast speeds. Good comparisons were found between measured and estimated, using published equations, for fuel consumption (-5.3% to 4.9%) and draft (-3.6% to 17.7%). For the ParatillTM, the normal speed produced the lowest fuel cost (5.10/ha)butoperatingatthisspeedreducedproductivityratefrom4.55ha/hatthefastspeeddownto3.23ha/h.Conversely,theKMCfastspeedprovidedthelowestfuelcost( 5.10/ha) but operating at this speed reduced productivity rate from 4.55 ha/h at the fast speed down to 3.23 ha/h. Conversely, the KMC fast speed provided the lowest fuel cost ( 5.35/ha) and highest productivity rate (4.35 ha/h) for this implement. In general, the ParatillTM provided the highest productivity and lowest fuel cost when operated at the typical speeds in the Southeastern US (around the normal to fast) mostly likely due to the lower required draft. In summary, the minimum fuel usage for each implement occurred at a different ground speed however, productivity was maximized at the fast speed with data reported useful to practitioners managing these style tillage implements

    Mouse chromosome 11

    No full text

    Correlation of the Highest-energy Cosmic Rays with the Positions of Nearby Active Galactic Nuclei.

    Get PDF
    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) \cite{science}. The correlation has maximum significance for cosmic rays with energy greater than ~ 6x10^{19}$ eV and AGN at a distance less than ~ 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified {\em a priori}, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuz'min effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.Comment: 33 pages, 8 figures, submitted to Astropart. phys. Now match the published versio

    Upper Limit on the Cosmic-ray Photon Flux Above 10**19-eV Using the Surface Detector of the Pierre Auger Observatory.

    Get PDF
    A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8*10^-3, 2.5*10^-3, and 2.2*10^-3 km^-2 sr^-1 yr^-1 above 10^19 eV, 2*10^19 eV, and 4*10^19 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted by the Auger Observatory to calibrate the shower energy is not strongly biased by a contamination from photons.Comment: 28 pages, 9 figures; v2: minor modifications; accepted by Astropart. Phy
    corecore