12 research outputs found

    Recent positive selection in genes of the mammalian epidermal differentiation complex locus

    Get PDF
    The epidermal differentiation complex (EDC) is the most rapidly evolving locus in the human genome compared to that of the chimpanzee. Yet the EDC genes that are undergoing positive selection across mammals and in humans are not known. We sought to identify the positively selected genetic variants and determine the evolutionary events of the EDC using mammalian-wide and clade-specific branch- and branch-site likelihood ratio tests and a genetic algorithm (GA) branch test. Significant non-synonymous substitutions were found in filaggrin, SPRR4, LELP1, and S100A2 genes across 14 mammals. By contrast, we identified recent positive selection in SPRR4 in primates. Additionally, the GA branch test discovered lineage-specific evolution for distinct EDC genes occurring in each of the nodes in the 14-mammal phylogenetic tree. Multiple instances of positive selection for FLG, TCHHL1, SPRR4, LELP1, and S100A2 were noted among the primate branch nodes. Branch-site likelihood ratio tests further revealed positive selection in specific sites in SPRR4, LELP1, filaggrin, and repetin across 14 mammals. However, in addition to continuous evolution of SPRR4, site-specific positive selection was also found in S100A11, KPRP, SPRR1A, S100A7L2, and S100A3 in primates and filaggrin, filaggrin2, and S100A8 in great apes. Very recent human positive selection was identified in the filaggrin2 L41 site that was present in Neanderthal. Together, our results identifying recent positive selection in distinct EDC genes reveal an underappreciated evolution of epidermal skin barrier function in primates and humans

    High quality InP-on-Si for solar cell applications

    Get PDF
    InP on Si solar cells combine the low-cost and high-strength of Si with the high efficiency and radiation tolerance of InP. The main obstacle in the growth of single crystal InP-on-Si is the high residual strain and high dislocation density of the heteroepitaxial InP films. The dislocations result from the large differences in lattice constant and thermal expansion mismatch of InP and Si. Adjusting the size and geometry of the growth area is one possible method of addressing this problem. In this work, we conducted a material quality study of liquid phase epitaxy overgrowth layers on selective area InP grown by a proprietary vapor phase epitaxy technique on Si. The relationship between growth area and dislocation density was quantified using etch pit density measurements. Material quality of the InP on Si improved both with reduced growth area and increased aspect ratio (length/width) of the selective area. Areas with etch pit density as low as 1.6 x 10(exp 4) sq cm were obtained. Assuming dislocation density is an order of magnitude greater than etch pit density, solar cells made with this material could achieve the maximum theoretical efficiency of 23% at AMO. Etch pit density dependence on the orientation of the selective areas on the substrate was also studied

    Characterization of Novel Di-, Tri-, and Tetranucleotide Microsatellite Primers Suitable for Genotyping Various Plant Pathogenic Fungi with Special Emphasis on Fusaria and Mycospherella graminicola

    Get PDF
    The goals of this investigation were to identify and evaluate the use of polymorphic microsatellite marker (PMM) analysis for molecular typing of seventeen plant pathogenic fungi. Primers for di-, tri-, and tetranucleotide loci were designed directly from the recently published genomic sequence of Mycospherlla graminicola and Fusarium graminearum. A total of 20 new microsatellite primers as easy-to-score markers were developed. Microsatellite primer PCR (MP-PCR) yielded highly reproducible and complex genomic fingerprints, with several bands ranging in size from 200 to 3000 bp. Of the 20 primers tested, only (TAGG)4, (TCC)5 and (CA)7T produced a high number of polymorphic bands from either F. graminearum or F. culmorum. (ATG)5 led to successful amplifications in M. graminicola isolates collected from Germany. Percentage of polymorphic bands among Fusarium species ranged from 9 to 100%. Cluster analysis of banding patterns of the isolates corresponded well to the established species delineations based on morphology and other methods of phylogenetic analysis. The current research demonstrates that the newly designed microsatellite primers are reliable, sensitive and technically simple tools for assaying genetic variability in plant pathogenic fungi

    Supramolecular selection in molecular alloys

    No full text
    Complexes of the type \[M(phen)3](PF6)2 (M = Ni(II), Fe(II), Ru(II) and phen = 1,10-phenanthroline) were found to co-crystallize to form molecular alloys (solid solutions of molecules) with general formula \[MAxMB1–x(phen)3](PF6)2·0.5H2O in which the relative concentrations of the metal complexes in the crystals closely match those in the crystallizing solution. Consequently, the composition of the co-crystals can be accurately predicted and controlled by modulating the relative concentrations of the metal complexes in the crystallizing solution. Although they are chemically and structurally similar, complexes of the type \[M(bipy)3](PF6)2 (M = Ni(II), Fe(II), Ru(II) and bipy = 2,2′-bipyridine) display markedly different behavior upon co-crystallization. In this case, the resulting co-crystals of general formula \[MAxMB1–x(bipy)3](PF6)2 have relative concentrations of the constituent complexes that are markedly different from the relative concentrations of the complexes initially present in the crystallizing solution. For example, when the nickel and iron complexes are co-crystallized from a solution containing a 50:50 ratio of each, the result is the formation of some crystals with a higher proportion of iron and others with a higher proportion of nickel. The relative concentrations of the metal complexes in the crystals can vary from those in the crystallizing solutions by as much as 15%. This result was observed for a range of combinations of metal complexes (Ni/Fe, Ni/Ru, and Fe/Ru) and a range of starting concentrations in the crystallizing solutions (90:10 through to 10:90 in 10% increments). To explain this remarkable result, we introduce the concept of “supramolecular selection”, which is a process driven by molecular recognition that leads to the partially selective aggregation of like molecules during crystallization

    Multilevel Interdependencies and Constraints in Panic Disorder: Many Triggers, Few Responses

    No full text
    corecore