9 research outputs found

    Direct evidence for microdomain-specific localization and remodeling of functional L-type calcium channels in rat and human atrial myocytes

    No full text
    Background—Distinct subpopulations of L-type calcium channels (LTCCs) with different functional properties exist in cardiomyocytes. Disruption of cellular structure may affect LTCC in a microdomain-specific manner and contribute to the pathophysiology of cardiac diseases, especially in cells lacking organized transverse tubules (T-tubules) such as atrial myocytes (AMs). Methods and Results—Isolated rat and human AMs were characterized by scanning ion conductance, confocal, and electron microscopy. Half of AMs possessed T-tubules and structured topography, proportional to cell width. A bigger proportion of myocytes in the left atrium had organized T-tubules and topography than in the right atrium. Super-resolution scanning patch clamp showed that LTCCs distribute equally in T-tubules and crest areas of the sarcolemma, whereas, in ventricular myocytes, LTCCs primarily cluster in T-tubules. Rat, but not human, T-tubule LTCCs had open probability similar to crest LTCCs, but exhibited ≈40% greater current. Optical mapping of Ca2+ transients revealed that rat AMs presented ≈3-fold as many spontaneous Ca2+ release events as ventricular myocytes. Occurrence of crest LTCCs and spontaneous Ca2+ transients were eliminated by either a caveolae-targeted LTCC antagonist or disrupting caveolae with methyl-β-cyclodextrin, with an associated ≈30% whole-cell ICa,L reduction. Heart failure (16 weeks post–myocardial infarction) in rats resulted in a T-tubule degradation (by ≈40%) and significant elevation of spontaneous Ca2+ release events. Although heart failure did not affect LTCC occurrence, it led to ≈25% decrease in T-tubule LTCC amplitude. Conclusions—We provide the first direct evidence for the existence of 2 distinct subpopulations of functional LTCCs in rat and human AMs, with their biophysical properties modulated in heart failure in a microdomain-specific manner

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Platform session

    Get PDF

    Distinct Distribution of Functional Calcium Channels Revealed by Super-resolution Scanning Patch-clamp in Adult Rat Atrial Cardiomyocytes

    No full text
    Distinct Distribution of Functional Calcium Channels Revealed by Super-resolution Scanning Patch-clamp in Adult Rat Atrial Cardiomyocyte

    P2X1 Receptors Amplify FcγRIIa-Induced Ca2+ Increases and Functional Responses in Human Platelets

    No full text
    Platelets express key receptors of the innate immune system such as FcγRIIa and Toll-like receptors (TLR). P2X1 cation channels amplify the platelet responses to several major platelet stimuli, particularly glycoprotein (GP)VI and TLR2/1, whereas their contribution to Src tyrosine kinase-dependent FcγRIIa receptors remains unknown. We investigated the role of P2X1 receptors during activation of FcγRIIa in human platelets, following stimulation by cross-linking of an anti-FcγRIIa monoclonal antibody (mAb) IV.3, or bacterial stimulation with Streptococcus sanguinis. Activation was assessed in washed platelet suspensions via measurement of intracellular Ca2+ ([Ca2+]i) increases, ATP release and aggregation. P2X1 activity was abolished by pre-addition of α,β-meATP, exclusion of apyrase or the antagonist NF449. FcγRIIa activation evoked a robust increase in [Ca2+]i (441 ± 33 nM at 30 μg/mL mAb), which was reduced to a similar extent (to 66–70% of control) by NF449, pre-exposure to α,β-meATP or apyrase omission, demonstrating a significant P2X1 receptor contribution. FcγRIIa activation-dependent P2X1 responses were partially resistant to nitric oxide (NO), but abrogated by 500 nM prostacyclin (PGI2). Aggregation responses to bacteria and FcγRIIa activation were also inhibited by P2X1 receptor desensitization (to 66 and 42% of control, respectively). However, FcγRIIa-mediated tyrosine phosphorylation and ATP release were not significantly altered by the loss of P2X1 activity. In conclusion, we show that P2X1 receptors enhance platelet FcγRIIa receptor-evoked aggregation through an increase in [Ca2+]i downstream of the initial tyrosine phosphorylation events and early dense granule release. This represents a further route whereby ATP-gated cation channels can contribute to platelet-dependent immune responses in vivo

    Poster presentations.

    No full text
    corecore