96 research outputs found

    Inhibition of ICAM-1/LFA-1-mediated Heterotypic T-cell Adhesion to Epithelial Cells: Design of ICAM-1 Cyclic Peptides

    Get PDF
    DOI: 10.1016/j.bmcl.2003.09.100In this work, we have designed cyclic peptides (cIBL, cIBR, cIBC, CH4 and CH7) derived from the parent IB peptide (ICAM-11–21) that are inhibitors of ICAM-1/LFA-1-mediated T-cell adhesion to Caco-2 cell monolayers. Cyclic peptide cIBR has the best activity of any of the peptides evaluated. The active ICAM-1 peptides have a common Pro-Arg-Gly sequence that may be important for binding to LFA-1

    Suppression of EAE and Prevention of Blood-Brain Barrier Breakdown after Vaccination with Novel Bifunctional Peptide Inhibitor

    Get PDF
    The efficacy of bifunctional peptide inhibitor (BPI) in preventing blood-brain barrier (BBB) breakdown during onset of experimental autoimmune encephalomyelitis (EAE) and suppression of the disease was evaluated in mice. The mechanism that defines how BPI prevents the disease was investigated by measuring the in vitro cytokine production of splenocytes. Peptides were injected 5 to 11 days prior to induction of EAE, and the severity of the disease was monitored by a standard clinical scoring protocol and change in body weight. The BBB breakdown in diseased and treated mice was compared to that in normal control mice by determining deposition of gadolinium diethylenetriaminepentaacetate (Gd-DTPA) in the brain using magnetic resonance imaging (MRI). Mice treated with PLP-BPI showed no or low indication of EAE as well as normal increase in body weight. In contrast, mice treated with the control peptide or PBS showed a decrease in body weight and a high disease score. The diseased mice had high deposition of Gd-DTPA in the brain, indicating breakdown in the BBB. However, the deposition of Gd-DTPA in PLP-BPI-treated mice was similar to that in normal control mice. Thus, PLP-BPI can suppress EAE when administered as a peptide vaccine and maintain the integrity of the BBB

    Single-Step Grafting of Aminooxy-Peptides to Hyaluronan: A Simple Approach to Multifunctional Therapeutics for Experimental Autoimmune Encephalomyelitis

    Get PDF
    The immune response to antigens is directed in part by the presence or absence of costimulatory signals. The ability to coincidently present both antigen and, for example, a peptide that inhibits or activates the costimulatory pathway, would be a valuable tool for tolerization or immunization, respectively. A simple reaction scheme utilizing oxime chemistry was identified as a means to efficiently conjugate different peptide species to hyaluronan. Peptides synthesized with an aminooxy N-terminus reacted directly to hyaluronan under slightly acidic aqueous conditions without the need for a catalyst. The resulting oxime bond was found to rapidly hydrolyze at pH 2 releasing peptide, but was stable at higher pH values (5.5 and 7). Two different peptide species, a multiple sclerosis antigen (PLP) and an ICAM-1 ligand (LABL) known to block immune cell stimulation, were functionalized with the aminooxy end group. These peptides showed similar reactivity to hyaluronan and were conjugated in an equimolar ratio. The resulting hyaluronan with grafted PLP and LABL significantly inhibited disease in mice with experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Aminooxy-peptides facilitate simple synthesis of multifunctional hyaluronan graft polymers, thus enabling novel approaches to antigen-specific immune modulation

    Antigen-Specific Blocking of CD4-Specific Immunological Synapse Formation Using BPI and Current Therapies for Autoimmune Diseases

    Get PDF
    This is the peer reviewed version of the following article: Manikwar, P., Kiptoo, P., Badawi, A. H., Büyüktimkin, B. and Siahaan, T. J. (2012), Antigen-specific blocking of CD4-Specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Med Res Rev, 32: 727–764. doi:10.1002/med.20243, which has been published in final form at http://doi.org/10.1002/med.20243. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.In this review, we discuss T-cell activation, etiology, and the current therapies of autoimmune diseases (i.e., MS, T1D, and RA). T-cells are activated upon interaction with antigen-presenting cells (APC) followed by a “bull’s eye”-like formation of the immunological synapse (IS) at the T-cell–APC interface. Although the various disease-modifying therapies developed so far have been shown to modulate the IS and thus help in the management of these diseases, they are also known to present some undesirable side effects. In this study, we describe a novel and selective way to suppress autoimmunity by using a bifunctional peptide inhibitor (BPI). BPI uses an intercellular adhesion molecule-1 (ICAM-1)-binding peptide to target antigenic peptides (e.g., proteolipid peptide, glutamic acid decarboxylase, and type II collagen) to the APC and therefore modulate the immune response. The central hypothesis is that BPI blocks the IS formation by simultaneously binding to major histocompatibility complex-II and ICAM-1 on the APC and selectively alters the activation of T cells from TH1 to Treg and/or TH2 phenotypes, leading to tolerance

    FRET Detection of Lymphocyte Function-Associated Antigen-1 Conformational Extension

    Get PDF
    Lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18, αLβ2-integrin) and its ligands are essential for adhesion between T-cells and antigen-presenting cells, formation of the immunological synapse, and other immune cell interactions. LFA-1 function is regulated through conformational changes that include the modulation of ligand binding affinity and molecular extension. However, the relationship between molecular conformation and function is unclear. Here fluorescence resonance energy transfer (FRET) with new LFA-1-specific fluorescent probes showed that triggering of the pathway used for T-cell activation induced rapid unquenching of the FRET signal consistent with extension of the molecule. Analysis of the FRET quenching at rest revealed an unexpected result that can be interpreted as a previously unknown LFA-1 conformation

    A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors

    Get PDF
    Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4 + T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention

    The influence of shear on the fermentation of Penicillium chrysogenum.

    Get PDF
    Intensive mechanical agitation in the stirred tank fermenters is known to improve mass and heat transfers. However, it can also detrimentally influence productivity and morphology of shear sensitive microorganisms. The influence of shear, meaning the mechanical forces resulting from the rotation of (multiple) turbine impellers, was investigated in batch fermentations of Penicillium chrysogenum Panlab P-1 using semidefined media. Experiments were carried out in three different scales of fermenter, 7 L, 150 L and 1500 L total volume, with the impeller tip speed ranging from 2.5 to 6.3 m/s. Throughout all fermentations, the dissolved oxygen concentration never fell below the critical values necessary for growth and penicillin production. Morphological measurements using image analysis showed that the main hyphal length, total hyphal length and hyphal growth unit increased during the fast growth period and then decreased to a relatively constant value dependent on the agitation intensity. The specific rate of penicillin production (qpen) and the average main hyphal length during the linear penicillin production phase decreased with increase in agitation speed. A higher degree of agitation promoted more rapid mycelial fragmentation and a higher branching frequency. The percentage of clumps was relatively high in all fermentations and was independent of the sample dilution. Comparison of the results from the three scales of fermenter shows that scale up cannot be based adequately on the impeller tip speed. A model based on the power input per unit mass (ϵ) was derived using experimental data from the three fermenter scales. It was found that for ϵ 10 W/kg, qpen and the mean main hyphal length were proportional ϵ-0.3. Experimental data from previously published articles were analysed in the light of the model and were found to follow the same general trends as found in this work. However, the transition point from no dependency on ϵ to relatively weak dependency was strain dependent. The data obtained from this work were also found to be reasonably well correlated to the model based on the mycelial circulation through the zone of high energy dissipation (P/D3tc)
    • …
    corecore