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Abstract

Host proteins are essential for entry and replication of HIV and provide important non-viral 

therapeutic targets. Large-scale RNAi-based screens have identified nearly a thousand candidate 

host factors, but with little agreement among studies and few validated factors. Here, we 

demonstrate that a genome-wide CRISPR-based screen identifies bona fide host factors in a 

physiologically relevant cell system. We identify five factors, including CD4 and CCR5, that are 

required for HIV infection yet dispensable for cellular proliferation and viability. TPST2 and 

SLC35B2 act in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating 

recognition by HIV envelope. ALCAM mediates cell aggregation, which is required for cell-to-

cell HIV transmission. We validate these pathways in primary human CD4+ T cells through Cas9-

mediated knockout and antibody blockade. Our findings indicate that HIV infection and 

replication rely on a limited set of host-dispensable genes and suggest focusing on these pathways 

for therapeutic intervention.

INTRODUCTION

Viruses are obligate intracellular pathogens that, due to small genomes and limited number 

of encoded proteins, exploit host proteins for entry, replication, and transmission. 

Identification of such host proteins, also termed host dependency factors (HDFs), is 

particularly important for identifying therapeutic targets. This strategy is especially attractive 

for pathogens that undergo rapid mutation, because therapeutic targeting of host rather than 

viral proteins is associated with a much higher barrier to drug resistance1.

HDFs that are dispensable for cellular viability yet critical for productive infection may be 

ideal targets for therapeutic intervention. For example, the discovery of CCR5 as a co-

receptor for HIV infection of CD4+ T cells and macrophages led to the development of 

small molecule inhibitors of CCR5 as therapeutic interventions2 that are effective even 
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following failure of virus-targeted therapy3. HDFs also present attractive targets for curative 

gene therapy, as is currently being developed for CCR5 (ref.4). The goal of this strategy is to 

engineer HIV resistance into CD4+ T cells of infected individuals through inactivation of 

CCR5 by means of genomic editing. Indeed, the only recorded case of HIV cure occurred 

after a patient received a hematopoietic stem cell transplant from a donor who was 

homozygous for the inactivating CCR5del32 allele5. Individuals with this allelic variant, 

however, have increased susceptibility to some viral infections6, cancers7,8, and other 

diseases9, suggesting that gene therapy approaches will benefit from the identification of 

other non-essential host genes required for HIV infection.

Large-scale, RNA interference (RNAi)-based screens have suggested 842 putative HIV 

HDFs10–12, but most of these candidate genes scored only in one of the three screens (only 

three genes were common to all three studies and only 34 genes were common to any two of 

the studies), suggesting a high false positive rate, low reproducibility, or both. RNAi-based 

screens have been improved by the generation of high coverage shRNA libraries with up to 

30 shRNA targeting each gene13 and analytical methods such as ATARiS and RIGER14,15, 

but issues of sensitivity and specificity remain. Moreover, because the screens were 

performed in non-physiologically relevant cells, it is unclear whether these candidate HDFs 

are necessary for HIV infection in primary CD4+ T cells and, critically, whether their loss 

affects normal cellular viability.

We and others have demonstrated that a CRISPR/Cas9-based genetic screening approach 

using lentiviral single-guide RNA (sgRNA) libraries can enable pooled loss-of-function 

screens with greater sensitivity and specificity than RNAi-based screens and have used the 

technology to uncover cell-essential genes and mediators of drug resistance16–19.

We conducted a CRISPR-based genetic screen in a naturally susceptible T cell line using a 

high-complexity, genome-wide sgRNA library. We identified five host genes that, when 

inactivated, conferred robust protection from HIV infection: the canonical HIV co-receptors 

CD4 and CCR5, and three factors not identified in previous screens, TPST2, SLC35B2 and 

ALCAM. Loss of these three factors did not impair cell viability, suggesting that they may 

represent attractive targets for therapeutic intervention. Finally, we developed a CRISPR-

based approach to validate host factors for CCR5-tropic HIV strains in primary human 

CD4+ T cells and demonstrated the importance of the cellular pathways identified by our 

screen in mediating efficient HIV infection. Our approach thus allows for highly specific, 

unbiased identification of host dependencies in physiologically relevant host cells, and can 

be generalized to other epidemic and pandemic viruses.

RESULTS

A genome-wide CRISPR screen for HIV dependency factors

To identify host genes important in facilitating HIV infection, we first engineered a 

physiologically relevant CD4+ T cell line model suitable for pooled CRISPR-based 

screening which we named ‘GXRCas9’ (Fig. 1a–b and Supplementary Note). Productive 

HIV infection of these cells leads to GFP expression, allowing the cellular infection state to 

be monitored at the single cell level by flow cytometry. We selected the CCR5-tropic HIV-1 
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strain JR-CSF for our screen, as virtually all known transmitted/founder strains of HIV-1, 

which dominate early clinical infection, are CCR5-tropic20.

We performed a pooled genome-wide screen using a lentiviral library containing 187,536 

sgRNAs targeting 18,543 protein-coding human genes (average of 10 sgRNAs per gene) and 

1,504 non-targeting control sgRNAs (i.e. those that do not target protein-coding sequences) 

(Supplementary Table 1). We infected 200 million GXRCas9 cells (~1000 cells per sgRNA) 

with the library and selected the sgRNA-transduced cells with puromycin. One week after 

sgRNA library infection, we spin-infected 200 million cells with JR-CSF at a multiplicity of 

infection (MOI) of 0.025. A GFP+ population (~10–20%, data not shown) was readily 

detectable one week after infection. After two additional weeks, we re-infected the cells with 

JR-CSF and cultured for an additional 10 days, this time finding no change in viability or 

reporter-driven GFP expression, suggesting that the remaining cells harbored genetic 

knockouts that rendered them resistant to HIV infection. In marked contrast to the parental 

cell line, the majority of surviving mutants lacked either CD4 or CCR5 (Figure 1c). 

Importantly, a sub-population of the surviving cells retained high CD4 and CCR5 cell-

surface expression, suggesting that our screen identified additional host factors for HIV 

infection (Figure 1c).

Next, we isolated viable, GFP-negative cells by fluorescence-activated cell sorting (FACS), 

and used massively parallel sequencing to measure the abundance of all sgRNAs from this 

population, an initial population of cells harvested prior to HIV infection, and a population 

of cells propagated for 6 weeks without HIV infection. For each gene, we calculated its 

score as the log2 fold-change in the abundance of the 5th highest scoring sgRNA 

(Supplementary Table 2). Five genes scored strongly above background levels: the well-

characterized HIV co-receptors CD4 and CCR5, and three additional genes, TPST2, 
SLC35B2, and ALCAM (Figure 1d). For each of these genes, at least 5 and up to 10 

sgRNAs were enriched, while nearly all sgRNAs targeting CXCR4, an HIV co-receptor that 

is not utilized by JR-CSF, and a randomly chosen control gene, RAP2A, did not score 

(Figure 1e). The same five genes were identified using the mean scoring sgRNA as the gene 

score (Supplementary Figure 1).

Validation of TPST2 and SLC35B2 as host dependency factors

To begin to understand how loss of TPST2 and SLC35B2 confers protection against HIV 

infection, we used the CRISPR-Cas9 system to generate clonal GXRCas9 cell lines null for 

both of these genes as assessed by massively parallel sequencing of the predicted target sites 

and qRT-PCR (Supplementary Figure 2). Under normal culture conditions, TPST2-null and 

SLC35B2-null cells were viable and proliferated at rates comparable to their wild-type 

counterparts and KO cells complemented with an sgRNA-resistant cDNA (Figure 2a).

Consistent with the results of the screen, TPST2-null and SLC35B2-null cells displayed 

robust resistance to infection with JR-CSF (MOI=1), similar to CCR5-null cells. 

Importantly, re-expression of an sgRNA-resistant cDNA encoding the gene completely 

ablated this resistance, while no changes in HIV susceptibility were seen upon transduction 

with an irrelevant control gene, RAP2A (Figure 2b). TPST2-null and SLC35B2-null cells 

appeared healthy following HIV challenge, whereas cells transduced with a non-targeting 
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sgRNA appeared grossly apoptotic (Figure 2c). To extend the physiological relevance of our 

work, we also infected these cell lines with Rejo.c, a CCR5-tropic transmitted/founder 

HIV-1 strain21, and obtained similar results (Figure 2b).

Host proteins hijacked by pathogens once inside the cell are often used for essential cellular 

functions such as transcription and translation22,23, while host factors for pathogen entry are 

often dispensable for cell viability, as is the case for CCR5 and CXCR4 in HIV and CD55 in 

malaria24. Given the normal proliferative capacity of the knockout cell lines, we investigated 

whether loss of TPST2 or SLC35B2 confers protection against HIV entry using a previously 

reported technique to specifically detect fusion of HIV virions to a target cell25 (Online 

Methods and Figure 2d). We found that loss of either TPST2 or SLC35B2 protected cells 

from viral entry, and that susceptibility was restored upon add-back of the inactivated gene 

(Figure 2e).

CCR5 sulfation is critical for HIV entry

We next sought to determine the mechanisms by which TPST2 and SLC35B2 facilitate viral 

entry. SLC35B2 transports the activated sulfate donor, 3′-phosphoadenosine-5′-

phosphosulfate (PAPS), from the cytosol, where it is synthesized, into the lumen of the 

Golgi apparatus, where it is used by a variety of enzymes to decorate sugars and proteins26. 

One such trans-Golgi-resident enzyme, TPST2, catalyzes the O-sulfation of tyrosines on 

secretory and plasma membrane proteins27.

We first tested the importance of cellular sulfation for HIV entry by culturing GXRCas9 

cells in custom media depleted of sulfates and in the presence of sodium chlorate, an 

inhibitor of sulfation28. Using the β-lactamase-based viral fusion assay described above, we 

found that sulfate-depleted cells are strongly protected from viral fusion relative to cells 

cultured under standard conditions (Figure 3a). Notably, this effect was not due to a loss of 

heparan sulfate proteoglycans, an important and abundant class of the cell surface proteins 

that are synthesized in an SLC35B2-dependent manner and are known to mediate cell-

surface attachment of various pathogens including Chlamydia trachomatis29,30, as pre-

treatment with heparinase did not affect entry in our assay (Figure 3a).

Previous studies have demonstrated that tyrosine sulfation at the N-terminus of CCR5 

facilitates interactions with HIV gp120 (ref.31). Because TPST2 sulfates CCR5 on these key 

tyrosine residues32, we hypothesized that loss of SLC35B2 protects against HIV infection 

by depriving TPST2 of PAPS (Figure 3b). To investigate this model, we assessed surface 

expression of CCR5 by flow cytometry using sulfation-sensitive and -insensitive CCR5 

antibodies33. Consistent with our hypothesis, nearly all surface CCR5 was sulfated in wild-

type GXRCas9 cells whereas none was sulfated in TPST2-null and SLC35B2-null cells. 

Importantly, the total levels of CCR5 on the surface of these cells were unchanged and add-

back of the relevant gene rescued CCR5 sulfation (Figure 3c).

ALCAM-ALCAM interactions mediate GXRCas9 cell aggregation

To validate ALCAM, we transduced GXRCas9 cells with an sgRNA targeting ALCAM and 

isolated ALCAM-null cells by FACS; as before, we re-expressed an sgRNA-resistant 

ALCAM cDNA in these cells by retroviral transduction (Figure 4a). Loss of ALCAM did 
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not compromise cell proliferation (Figure 4b). Unexpectedly, ALCAM-null cells exhibited 

no protection against JR-CSF infection (MOI=1) (Figure 4c), despite the fact that all ten 

sgRNAs targeting ALCAM in the library were enriched in the screen (Figure 1e). 

Interestingly, we observed that ALCAM-null cells grew as single cells under standard 

culture conditions, while wild-type GXRCas9 cells, similar to activated primary CD4+ T 

cells, formed aggregates (Figure 4d). Re-expression of ALCAM rescued the aggregation 

phenotype.

The precise cellular function of ALCAM, a cell adhesion molecule expressed on activated T 

cells, monocytes, and dendritic cells34, is not fully understood35,36. In vitro experiments 

have demonstrated that antibody blockade of ALCAM affects diapedesis of monocytes, but 

not T cells, across a human blood-brain barrier model37. Systemic anti-ALCAM 

administration has thus been proposed as a therapy for HIV-associated neurocognitive 

disorders. The interaction of ALCAM with CD6 is involved in stabilizing the immunological 

synapse between T cells and antigen presenting cells38. However, homotypic ALCAM-

ALCAM interactions have also been described39.

To determine which of these potential interactions mediates the aggregation of GXRCas9 

cells, we co-cultured ALCAM-null cells and WT cells labeled with distinct fluorescent dyes 

(Figure 4e). Aggregates in co-culture were composed solely of WT cells, while ALCAM-

null cells remained as singlets (Figure 4f). Add-back of the ALCAM gene and co-culture 

with WT cells yielded mixed aggregates. Confocal microscopy of GXRCas9 cells stained 

with an ALCAM antibody showed strong polarization of ALCAM to the site of cell-cell 

contacts (Figure 4g), supporting its role in mediating these contacts. Together, these data 

demonstrate that homotypic interactions between ALCAM molecules on opposing cells are 

required for the aggregation of GXRCas9 cells.

Loss of ALCAM disrupts cell-to-cell HIV transmission

Due to the striking loss of cell-to-cell aggregation observed in ALCAM-null cells, we 

hypothesized that loss of ALCAM interrupts cell-to-cell transmission, thereby attenuating 

infection. This model reconciles the results obtained from the primary screen, which used a 

low virus dose (MOI = 0.025) over six weeks, with those from the short-term validation 

assay, which used an MOI of 1 and would not require cell-to-cell transmission for 

widespread HIV infection. Consistent with this model, ALCAM-null cells showed dramatic 

protection in viral challenge assays performed at a low MOI over a longer duration 

(Supplementary Figure 3). To confirm that the protective effect was due to inhibition of cell-

to-cell transmission, we co-cultured HIV-infected WT “donor” cells with uninfected, 

fluorescently labeled ALCAM-null “acceptor” cells and assessed degree of infection of 

labeled cells after 4 days (Figure 5a). ALCAM-null cells were completely protected from 

infection, while cells transduced with a non-targeting control showed substantial infection 

and death (Figure 5b). ALCAM add-back ablated this protection, while add-back of a 

control gene, RAP2A, had no effect.

To demonstrate that our assay isolated the effects of cell-to-cell transmission, we placed the 

infected WT cells in a 0.45 μm pore transwell insert, which permits passage of free HIV 

virions, but not cells. In this setting, we found that the cells were protected from HIV 
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infection irrespective of ALCAM genotype, confirming the necessity of cell-to-cell contacts 

for infection (Figure 5b).

We next assessed the degree of cell-to-cell HIV transmission when one, both, or neither of 

the donor and acceptor cell lines lacked ALCAM. Consistent with the model that homotypic 

ALCAM interactions mediate cell aggregation and therefore cell-to-cell transmission, 

infection of the acceptor cells was only observed when both the donor and acceptor were 

ALCAM-positive (Figure 5c).

Finally, we investigated whether protection against cell-to-cell HIV transmission was a 

direct result of disrupting cell aggregation, or whether cell-to-cell contacts mediated by 

ALCAM promoted HIV infection in a specific manner. We labeled the surface of cells with 

complementary oligonucleotides40 to cause aggregation of ALCAM-null cells in an 

ALCAM-independent manner (Figure 5d). As expected, cells labeled with complementary 

oligonucleotides formed aggregates that appeared similar to those seen in WT GXRCas9 

cells (Figure 5e). Using these cells in the cell-to-cell transmission assay described above, we 

found that this non-specific aggregation of ALCAM-null cells fully abrogated protection 

against cell-to-cell transmission (Figure 5f). By contrast, ALCAM-null cells labeled with 

identical (i.e. non-complementary) oligonucleotides were protected as in previous assays 

without oligonucleotide labeling.

Together, these data indicate that loss of ALCAM confers strong protection against cell-to-

cell HIV transmission by disrupting cell aggregation and that restoring aggregation by other 

means restores cell-to-cell transmission.

CRISPR/Cas9-mediated genome editing in primary CD4+ T cells

Next, to establish the physiological relevance of our primary screen results, we developed an 

assay to validate HDFs for CCR5-tropic HIV infection in primary CD4+ T cells using 

CRISPR/Cas9. Primary peripheral CD4+ T cells isolated from the blood of healthy donors 

were activated using antibodies against CD3 and CD28. Cells were then electroporated with 

ribonucleoprotein complexes (Cas9-RNPs) consisting of the Cas9 nuclease bound to a gene-

specific CRISPR RNA (crRNA) and the trans-activating crRNA (tracRNA)41 (Figure 6a). 

After six days in culture to allow for depletion of the targeted gene product, the cells were 

re-activated for three days to promote productive CCR5-tropic HIV infection.

Validation of SLC35B2 as an HDF in primary CD4+ T cells

Using this approach, we targeted SLC35B2 in primary CD4+ T cells and assessed the 

sulfation state of surface CCR5. Consistent with the results from GXRCas9 cells, we found 

that the majority of CCR5 was de-sulfated nine days following transfection, while total 

CCR5 expression was unaffected (Figure 6b). Surface CCR5 was completely sulfated in the 

non-targeting control, as expected.

Taking advantage of the fact that gene editing does not occur in every cell following Cas9-

RNP electroporation, we next challenged these cells with HIV and assessed mutant allele 

frequency. In two donors, nearly all alleles in cells that survived either JR-CSF or Rejo.C 

challenge were mutated (Figure 6c). To demonstrate that de-sulfation of CCR5 correlates 
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with protection against HIV infection, we also assessed the extent of CCR5 sulfation in HIV-

challenged cells and found that surface CCR5 on productively infected cells was exclusively 

sulfated (Supplementary Figure 4). Correspondingly, CCR5 was de-sulfated on cells that 

remained uninfected following HIV challenge compared to mock-challenged cells.

In a parallel approach, we assessed infection levels of edited primary CD4+ T cells from two 

additional donors by intracellular flow staining for HIV Gag (p24). We found that targeting 

either CCR5 or SLC35B2 conferred similar, high levels of protection against infection by 

JR-CSF but conferred no protection against infection by VSV-G-pseudotyped HIV (Figure 

6d), which infects cells in a CD4- and CCR5-independent manner. This selective protection 

is consistent with the model for SLC35B2 presented above.

Disrupting primary T cell aggregation hinders HIV spread

Having observed that ALCAM knockout yielded protection against cell-to-cell HIV 

transmission by disruption of GXRCas9 cell aggregation, we next sought to recapitulate this 

protection in primary CD4+ T cells, which aggregate upon activation. As activated primary 

CD4+ T cells express substantially lower (~10-fold) levels of ALCAM compared to 

GXRCas9 cells (Supplementary Figure 5 and Supplementary Table 3), we looked for other 

molecules known to be involved in the aggregation of activated primary CD4+ T cells, the 

best characterized of which are the ICAM and LFA families42,43. A recent study found that 

T cells isolated from Icam1-null mice failed to aggregate upon activation44, analogous to the 

phenotype observed upon ALCAM knockout in GXRCas9 cells. Incidentally, we observed 

that GXRCas9 cells express very low levels of ITGAL, which encodes CD11a, one of two 

subunits of LFA-1 (Supplementary Figure 5 and Supplementary Table 3).

We therefore investigated the effect of disrupting ICAM/LFA-1 interactions on cell-to-cell 

HIV transmission in primary CD4+ T cells. Using the Cas9-RNP gene editing approach, we 

generated a population of ITGAL-null primary CD4+ T cells (Figure 6a). We then co-

cultured productively infected ‘donor’ cells with uninfected, fluorescently labeled ‘acceptor’ 

cells, and found that knockout of ITGAL in both donors and acceptors attenuated cell-to-cell 

transmission compared to WT donors and acceptors (Figure 6e). Consistent with the 

heterophilic nature of the ICAM/LFA-1 interaction, knockout of ITGAL in only the donors 

did not confer protection (Supplementary Figure 6a). Similar protection against cell-to-cell 

HIV transmission was observed using an antibody cocktail directed against ICAM-1 and 

LFA-1, but not with a control antibody directed against CD45, which is also highly 

expressed on the surface of T cells, suggesting the protection was not due a non-specific 

‘blocking’ effect (Supplementary Figure 6b,c).

DISCUSSION

Our CRISPR-based screen identified five host dependency factors required for productive 

HIV infection. In addition to the canonical HIV co-receptors CD4 and CCR5, we identified 

TPST2, SLC35B2 and ALCAM, none of which was among the hundreds of genes identified 

in previous RNAi based screens10–12. We defined the mechanisms by which these genes 

facilitate HIV infection and validated these pathways in primary CD4+ T cells. Loss of 

TPST2, SLC35B2, and ALCAM did not impact cellular fitness. These results indicate that 
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HIV relies on a limited number of non-essential host proteins for replication, and suggest 

pathways for potential therapeutic intervention.

Some key methodological differences likely explain the large discrepancy in the numbers of 

hits obtained in our screen compared to the RNAi-based screens.

First, the studies employ different methods to perturb gene function. Previous studies all 

relied on RNAi-mediated gene knockdown, which only partially suppresses target gene 

levels and can have off-target effects on other mRNAs45. Additionally, the arrayed format of 

these screens limited the number of siRNA reagents targeting each gene (such that many 

genes with only a single scoring siRNA were called as candidate HDFs), increasing the 

likelihood of false positive and false negative results. These factors likely contributed to the 

low overlap observed between each data set. Notably, we were unable to detect any 

protection against JR-CSF infection in GXRCas9 cells transduced with an sgRNA targeting 

RELA, the single non-essential gene hit that was identified in all three prior screens 

(Supplementary Figure 7).

In contrast, we performed a pooled CRISPR/Cas9-based screen using a genome-wide 

sgRNA library that was optimized for high target cleavage activity. In this approach, Cas9-

mediated cleavage inactivates target genes at the DNA level, enabling the generation of null 

alleles. This approach displays minimal activity at secondary, off-target sites, most of which 

reside in non-coding regions. Furthermore, previous screens for cell-essential genes, which 

are more technically demanding (because cleavage of the target gene must occur in the 

majority of cells carrying an sgRNA construct in order to reliably assess essentiality), have 

demonstrated that the effective coverage of our library is high18.

Second, the RNAi screens were performed in different cell line models (derived from 

HEK-293 and HeLa cells), which were chosen to facilitate efficient siRNA transfection and 

high-throughput imaging, but which are dissimilar in many respects to natural target cells for 

HIV infection. While these cell line models have been frequently utilized to study HIV 

infection, they are not naturally susceptible to HIV infection. Therefore, to more faithfully 

model the physiological HIV infection process, we conducted our screen in a CD4+ T cell 

leukemia line and confirmed our findings in primary CD4+ T cells.

Third, the screen endpoints and the criteria for determining candidate genes also differed 

greatly. Genes from the RNAi-based screens were evaluated in an arrayed format 1–2 days 

after HIV infection, when weakly protective hits or those that delay, but not suppress, the 

course of infection would be expected to score. In addition, because CRISPR predominantly 

generates null alleles, our screen was poised to detect genes that were dispensable for 

proliferation and viability. Mutants obtained in our screens survived serial challenge with 

replication-competent HIV for several weeks. This stringent selection process selected for 

genes whose loss conferred robust, sustained protection against HIV infection and also did 

not affect cell viability. We note that while loss of these genes does not affect cell viability in 
vitro, perturbing them may have biological consequences at the organismal level. For 

example, Tpst2-deficient mice are viable but have thyroid hypoplasia46. Similarly, Itgal-
deficient mice are viable and grossly normal but, as may be expected, they exhibit peripheral 
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leukocytosis47 and immune dysfunction48. Zebrafish lacking the homolog of SLC35B2 have 

cartilage defects49. For the purposes of gene editing-based therapies, some of these effects 

may be avoided by limiting gene editing to specific cell types (e.g. T cells or hematopoietic 

stem cells). However, further pre-clinical investigation will be needed to determine whether 

these genes may be suitable therapeutic targets.

Studies to map the HIV-human protein-protein interactome50 as well as more targeted 

studies have identified dozens of host genes with putative roles in facilitating or restricting 

HIV infection1. There are several reasons why our screen would not be expected to identify 

these genes. First, by requiring a high degree of protection, we would expect to identify only 

host factors that are necessary for productive HIV infection (see Supplementary Note). 

Second, many host factors are likely to be essential; indeed, in contrast to TPST2, SLC35B2, 

and ALCAM, many known or candidate HIV HDFs are among the 10% highest scoring 

genes in an essentiality screen that we recently reported18 (Supplementary Figure 8). Third, 

the genes may have functionally redundant paralogs; for example, PAPS can be synthesized 

by PAPSS1 and PAPSS2, which are both expressed in GXRCas9 cells (Supplementary 

Figure 9a and Supplementary Table 3). Notably, TPST2 and SLC35B2 are the dominant 

paralogs in both GXRCas9 cells and primary CD4+ T cells (Supplementary Figure 9a,b and 

Supplementary Table 3). Fourth, some genes facilitate but are not essential for HIV infection 

– for example, LEDGF biases integration to highly spliced transcription units but is not 

essential for integration51,52. Finally, host factors involved only in the latest stages of the 

HIV life cycle are not captured by our approach, as HIV Tat, which drives our reporter, is 

expressed prior to unspliced viral RNA export, virion assembly, and budding53.

The results presented here indicate the importance of the sulfation pathway in HIV infection, 

which was also highlighted recently by the development of eCD4-Ig, a synthetic fusion of 

CD4-Ig with a CCR5-mimetic sulfopeptide that demonstrated higher neutralization capacity 

and breadth than any known broadly neutralizing antibody54. Importantly, the therapeutic 

strategy required co-delivery of TPST2 to mediate high levels of sulfation and effective 

neutralization.

TPST2 also sulfates key tyrosine residues on CXCR455, the other major co-receptor for HIV, 

and these tyrosine residues on CXCR4 are known to mediate important interactions with 

HIV gp12056,57. Thus, inhibiting cellular protein sulfation may provide protection against 

CCR5-tropic, CXCR4-tropic, and dual-tropic HIV strains; this may be particularly important 

given that therapies targeted specifically against CCR5 can drive a shift towards CXCR4 

tropism in vivo58,59. Sulfation may also affect HIV in ways not related to entry (see 

Supplementary Note).

We also determined the mechanism of ALCAM as an HDF. Aggregation of T cells has been 

demonstrated to be a hallmark of activated cells both in vitro60 and in vivo58,59. HIV is 

known to spread far more efficiently in vitro (up to several orders of magnitude) by direct 

cell-cell contacts compared to cell-free transmission61,62. Our results demonstrate the 

importance of cell-to-cell transmission for effective HIV replication and may have 

implications for the clinical setting. Antiretroviral therapies and broadly neutralizing 

antibodies are known to have markedly less efficacy against cell-to-cell transmission63,64. 
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Cell-to-cell transmission may also drive CD4+ T cell decline in vivo through tissue 

inflammation and cell death by caspase-1-dependent pyroptosis65. Some studies have also 

suggested that inflammation and viral replication in lymphoid tissues may continue even in 

individuals on anti-retroviral therapy with undetectable viral loads66,67, possibly 

contributing to the long-term clinical risks and co-morbidities observed in people living with 

HIV/AIDS. Therapies that disrupt interactions between a wide range of immune cell types 

have already been developed68,69, and our results suggest that disrupting CD4+ T cell 

aggregation may halt HIV spread in vivo (see Supplementary Note).

Global use of combination antiretroviral therapy for HIV has saved tens of millions of lives 

and slowed the AIDS epidemic but has failed to prevent the emergence and spread of drug-

resistant strains. Anti-HIV therapies that target host genes and pathways required by HIV 

may substantially raise the barrier to drug resistance and potentially offer new interventional 

and curative strategies through gene therapy. More generally, our study demonstrates that 

CRISPR-based genetic screens in physiological cells can specifically identify non-essential 

host proteins critical for viral infection, and applying this approach to other pandemic and 

epidemic viruses will allow robust and unbiased identification of novel therapeutic targets.

ONLINE METHODS

Cell culture

GXRCas9 cells were cultured in RPMI-1640 (Gibco) supplemented with 20% heat-

inactivated fetal calf serum (Sigma), 10 mM HEPES (Gibco), 2 mM GlutaMAX (Gibco), 

and penicillin/streptomycin. 293T cells were cultured in IMDM (Life Technologies) and 

supplemented with 20% heat-inactivated fetal calf serum (Sigma), 5 mM glutamine, and 

penicillin/streptomycin.

Antibodies

The following antibodies were used throughout this study: from Biolegend, anti-CD4-APC 

clone RPA-T4, anti-ALCAM-PE clone 3A6, anti-CD11a-PE clone TS2/4, polyclonal anti-

RELA/NF-kB (p65), anti-CD18 clone TS1/18, and anti-CD45 clone HI30. From Becton 

Dickinson, anti-CCR5-BV421 clone 2D7, anti-CCR5-APC clone 2D7, and anti-sulfated 

CCR5-BV786 clone 3A9. From Beckman Coulter, anti-HIV Gag (p24)-RD1 clone KC57. 

From Affymetrix, anti-ICAM-1 clone RR1/1. From AbD Serotec, anti-CD11a clone 38. 

From Life Technologies, Goat anti-mouse IgG - Alexa Fluor 488. From Cell Signaling 

Technology, anti-RPS6 clone 5G10. From Tonbo Biosciences, anti-CD3 clone UCHT1 and 

anti-CD28 clone 28.2. All antibodies have been described and characterized in previous 

publications.

Flow cytometry

Cells were stained with antibodies in PBS + 2% fetal calf serum for 20 min at 4°C and fixed 

with 4% paraformaldehyde. For intracellular staining for HIV Gag, cells were fixed and 

permeabilized using Cytofix/Cytoperm (Becton Dickinson) prior to antibody staining. Data 

was acquired on a 5 laser LSR Fortessa (Becton Dickinson) and analyzed using FlowJo 

software (TreeStar).
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GXRCas9 cell line generation

CCRF-CEM cells stably transduced with CCR5-hygR and HIV-1 LTR-GFP, termed “GXR”, 

were generated previously70. GXR cells were transduced with a lentiviral construct 

expressing Cas9 and blasticidin deaminase (Cas9-bsd). Following 1 week of antibiotic 

selection, single, viable cells were sorted into 96-well plates by FACS. Sub-clones were 

analyzed by flow cytometry for expression of surface CD4, CCR5, and CXCR4, as well as 

GFP before and after HIV infection. A sub-clone, termed GXRCas9, was selected for high 

receptor expression, low basal GFP expression, and high HIV-infection-induced GFP 

expression. Cas9 activity was confirmed by loss of surface CD4 expression in a majority of 

cells following lentiviral transduction with an sgRNA targeting CD4.

sgRNA library cloning and lentiviral production

A plasmid library containing 187,536 sgRNAs targeting 18,543 protein-coding human genes 

and 1,504 non-targeting control sgRNAs was synthesized as oligonucleotides (CustomArray 

Inc) and cloned by Gibson Assembly71 as described previously72 into a lentiviral sgRNA 

expression vector that did not contain Cas973. The sgRNA sequences in this library includes 

(1) the activity-optimized library generated previously18 and (2) 5,401 additional sgRNAs 

comprising 499 intergenic control sgRNAs and 4,902 sgRNAs targeting 497 additional 

protein-coding genes (Supplementary Table 1). Lentivirus was produced from HEK-293T 

cells as described previously72.

Pooled genome-wide CRISPR screen

240 million GXRCas9 cells were transduced with a lentiviral sgRNA pool to achieve an 

average 1000-fold coverage of the library after selection. After 24 h, cells were selected with 

puromycin and an initial pool of 80 million cells was harvested for genomic DNA extraction 

using the QIAamp DNA Blood Maxi kit according to manufacturer’s instructions. 1 week 

later, 200 million puromycin resistant cells were spin infected with HIV-1 JR-CSF at an 

MOI of 0.025 in two 6-well plates. After three weeks of culture, cells were re-infected with 

JR-CSF under the same conditions. After three additional weeks, 10 million viable, GFP-

negative cells were isolated by FACS and harvested for genomic DNA. PCR, sequencing, 

and alignment to the sgRNA library were performed as previously described16.

Screen analysis

Sequencing reads were aligned to the sgRNA library and the abundance of each sgRNA was 

calculated. sgRNAs with less than 25 counts in the initial set were removed from 

downstream analyses. The log2 fold change in abundance of each sgRNA was calculated for 

the infected and uninfected final population samples after adding 0.5 as a pseudocount. 

Gene-based CRISPR scores (CS) were defined as the 5th-highest log2 fold change of all 

sgRNAs targeting a given gene or the average log2 fold change of all sgRNAs targeting a 

given gene.

Vector construction

Individual sgRNA constructs targeting ALCAM, CCR5, RELA, SLC35B2 and TPST2, and 

non-genic control sgRNAs were cloned into pLenti-sgRNA73 (sequences provided in 
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Supplementary Table 4). For cell-free virus infection assays, all three control sgRNAs were 

used (sgCTRL-1 and sgCTRL-2 target non-coding regions of the genome and sgCTRL-3 

does not target a sequence in the genome). For all other experiments, sgCTRL-1 was used.

For cDNA expression vectors, a linearized lentiviral backbone was generated from LeGO-

iC2 (Addgene #27345)74 by digestion with NheI and BsrGI. gBlocks (IDT) comprising the 

EF1a-short (EFS) promoter, the appropriate gene (ALCAM, RAP2A, SLC35B2, or TPST2), 

and p2A-E2Crimson were cloned into this backbone via Gibson assembly. Protein-coding 

sequences were codon-optimized.

Clonal knockout and add-back cell line generation

GXRCas9 cells were transduced with sgRNA targeting SLC35B2 and TPST2. Single cells 

were isolated by FACS and each of the resultant clonal populations was genotyped by deep 

sequencing and qPCR analysis. For add-back experiments, knockout lines were transduced 

with the appropriate cDNA expression constructs. E2-Crimson positive cells were isolated 

by FACS.

qPCR analysis of knockout clones

Total RNA was extracted from 3 million wild-type GXRCas9 cells and TPST2- and 

SLC35B2-knockout clones using the RNeasy Mini Kit (Qiagen). First strand cDNA 

synthesis was performed using 5 μg of total RNA with the SuperScript® III First-Strand 

Synthesis System with oligo(dt)20 (Invitrogen). Quantitative PCR was performed using 

FastStart Universal SYBR Green Real-time PCR Master Mix (Roche) in a real-time PCR 

system (Applied Biosystems). Primers for TPST2 and SLC35B2 overlapped the sgRNA 

target in order to selectively amplify wild-type cDNA (sequences provided in Supplementary 

Table 4). RPS6KA5 was used a reference normalization control and expression levels were 

quantified by the delta Ct method.

Cellular proliferation assay

ATP-based measurements of cellular proliferation were performed by plating 2,000 cells per 

well in 96-well plates. Six replicate wells were plated for each sample. At the initial time 

point or after 2 or 4 days, 50 μL of Cell Titer Glo reagent (Promega) was added to each well 

and mixed for 5 min. Luminescence was measured on the Spectra Max M5 Luminometer 

(Molecular Devices).

Cell-free virus infection assay

GXRCas9 cells were plated in flat-bottom 96-well plates at 100,000 cells per mL and spin-

infected with media only or HIV-1 JRCSF at an MOI of 1 for 45 min at 800xg and 25°C. 

Three days later, cells were stained with propidium iodide (Life Technologies), and viable 

cells were counted using a combination flow cytometer/Coulter counter (MoxiFlow, Orflo 

Technologies). Cells were also analyzed by flow cytometry for GFP expression. The 

absolute number of viable, GFP-negative cells in HIV-infected wells was calculated and 

normalized to a corresponding media-only control well.

Park et al. Page 13

Nat Genet. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Viral fusion assay

Entry of HIV virions into target cells was measured using a previously described assay25. 

Chimeric JR-CSF virions that contain Vpr fused to β-lactamase were generated by co-

transfecting HEK-293T cells with a vector encoding JR-CSF and a plasmid encoding the 

Vpr gene fused to the β-lactamase gene (pMM310, NIH AIDS Reagent Program #11444). 

Supernatant containing virus was concentrated over a 20% sucrose solution in PBS by 

ultracentrifugation using a Sorvall WX100 Ultracentrifuge (1.5 h, 150,000xg, 4°C). 

GXRCas9 cells were exposed to concentrated virus for 2 h at 37°C. Cells were then washed 

and loaded with CCF2-AM (Invitrogen), a Förster resonance energy transfer (FRET) donor/

acceptor pair linked by a β-lactam ring, in the presence of 1.8 mM Probenicid (Sigma) for 2 

h at room temperature. Cells were then washed and fixed. β-lactamase released into target 

cells upon viral fusion cleaves the FRET acceptor (fluorescein) from CCF2, producing an 

emission shift that is analyzed by flow cytometry.

Cellular sulfate depletion

Cells were cultured for 1 week in custom-made Advanced RPMI-1640 (Life Technologies) 

with magnesium sulfate, zinc sulfate, and copper (II) sulfate replaced with their respective 

chloride salts, and supplemented with fetal calf serum (Sigma), GlutaMAX (Gibco), 

penicillin/streptomycin, and 150 mM sodium chlorate (Sigma) as described previously75. 

Cells were then used in the viral fusion assay as described.

Heparinase treatment

GXRCas9 cells were washed 3 times in PBS and plated in a 96-well plate at 300,000 cells 

per well. 100 μL Bacteroides Heparinase II (New England Biolabs) diluted in PBS was 

added to the well at a concentration of 2 U/mL, and cells were incubated at 37°C for 1 h. 

Cells were then washed twice in PBS and used in the viral fusion assay as described.

Confocal microscopy

Cells were imaged on a Zeiss LSM 510 laser scanning confocal microscope equipped with a 

20× objective and far red and diode (405 nm) lasers using ZEN software (Carl Zeiss). 

Images were acquired with optical sections at 0.33 μm intervals in the z-axis. Slices were 

collapsed to single images using ImageJ software (NIH). For living cells, imaging was 

performed at 37°C and 5% CO2 in complete media.

To image ALCAM, cells were loaded onto coverslips coated with poly-D-lysine in 24 well 

plates. After 45 min at 37°C, cells were fixed with 4% paraformaldehyde for 15 min at room 

temperature, permeabilized with 0.5% triton for 15 min at room temperature, blocked with 

PBS + 3% BSA for 1 h at room temperature, and stained with anti-ALCAM antibody 

overnight at 4°C. The coverslips were then stained with a secondary anti-mouse IgG 

antibody conjugated to Alexa Fluor 488 for 1 h at room temperature, washed, and mounted 

on slides using ProLong Gold Antifade Reagent containing DAPI (Life Technologies). 

Images were acquired with a 40× objective using the setup described above.

Park et al. Page 14

Nat Genet. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cell mixing study

GXRCas9 cells of the indicated genotype were fluorescently labeled using the CellTrace Far 

Red or Violet kits (Life Technologies). 50,000 each of violet- and red- labeled cells were co-

cultured in 350 μL of complete media in an 8-well Nunc Lab-Tek II Chamber Slide system 

(Thermo Scientific) and incubated for 1 h, followed by confocal microscopy.

Cell-to-cell transmission assay

For donor cells, GXRCas9 cells of the indicated genotype were spin-infected with HIV-1 

JR-CSF at an MOI of 1 except where indicated otherwise. After 4 h, GXRCas9 cells were 

washed extensively and resuspended in complete media. For acceptor cells, GXRCas9 cells 

of the indicated genotype were fluorescently labeled using the CellTrace Far Red kit (Life 

Technologies). 40,000 each of donor and acceptor cells were co-cultured in 1.5 mL of 

complete media in a 24-well plate. Where indicated, donor cells were placed in a 0.45 μm 

pore size transwell (Corning). After four days, except where indicated otherwise, cells were 

counted and analyzed by flow cytometry as in the cell-free virus infection assay.

For primary cells, the cell-to-cell transmission assay was modified as follows: donor cells 

were activated for 3 days using ImmunoCult Human CD3/CD28 T cell activator (StemCell 

Technologies), infected as above, and cultured for 24 h prior to co-culture with acceptor 

cells. Acceptor cells were separately activated for 3 days and then fluorescently labeled prior 

to co-culture as described above. After 2 days of co-culture, cells were stained and analyzed 

for intracellular HIV Gag (p24) instead of GFP. For antibody blockade experiments, 

antibodies were added to donor and acceptor cells separately (10 μg/mL for anti-CD11a and 

anti-ICAM-1, 20 μg/mL for anti-CD18, 10 ug/mL for anti-CD45) for 15 min at 37°C prior 

to co-culture.

Oligonucleotide labeling of ALCAM-null GXRCas9 cells

400 μg 5′-thiol-modified oligonucleotides (sequences: (ACTG)×5 and (CAGT) ×5) 

(Integrated DNA Technologies) dissolved in 10 mM Tris pH 7.5, 1 mM EDTA, and 10 mM 

TCEP were passed through a Centri-Spin 10 size exclusion column (Princeton Separations) 

and exposed to 250 nmol of NHS-PEG6-maleimide (Thermo Scientific) in DMSO. This 

NHS-PEG6 conjugated DNA solution was further purified through a Centri-Spin10 size 

exclusion column pre-equilibrated with PBS. Concentration was determined using a 

NanoDrop 2000 spectrometer (Thermo Scientific).

200,000 GXRCas9 cells were washed 3 times with PBS and then re-suspended in 300 μM 

NHS-PEG6 conjugated DNA solution and incubated at room temperature for 1 h. Cells were 

washed 3 times with PBS + 1% FCS and used in downstream experiments.

Primary CD4+ T cell isolation and culture

For donors 1 and 2, CD4+ T cells were isolated directly from buffy coats obtained from 

healthy donors (Massachusetts General Hospital) using the EasySep Direct Human CD4+ T 

cell Isolation Kit (StemCell), according to manufacturer’s instructions. Isolated cells were 

cultured in X-VIVO 15 (Lonza), supplemented with 5% heat-inactivated human AB serum 
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(Valley Biomedical), 55 μM β-mercaptoethanol (Gibco), and 10 mM N-acetyl-l-cysteine 

(Sigma).

For donors 3 and 4, PBMCs were isolated by Ficoll gradient centrifugation from whole 

blood collected from healthy donors (UCSF). CD4+ T cells were then isolated using the 

EasySep Human CD4+ T cell Enrichment Kit (StemCell), according to the manufacturer’s 

instructions. Isolated cells were cultured in complete RPMI media, consisting of RPMI-1640 

(UCSF Cell Culture Facility (CCF)) supplemented with 5 mM HEPES, 2 mM Glutamine, 50 

μg/mL penicillin/streptomycin, 5 mM nonessential amino acids, 5 mM sodium pyruvate, and 

10% fetal bovine serum (Atlanta Biologicals).

Genetic editing of primary CD4+ T cells

Cas9-RNPs were assembled as described previously41. Briefly, tracrRNA and crRNA 

(sequences provided below) were hybridized in a 1:1 ratio at 37°C for 30 min. Purified Cas9 

protein was added in a 1:1 protein:RNA molar ratio, and the mixture was incubated at 37°C 

for 15 min prior to electroporation.

For donors 1 and 2, primary CD4+ T cells were activated using 10 μL ImmunoCult Human 

CD3/CD28 T cell activator (StemCell Technologies) per mL of media. After 3 days, 1 

million cells were electroporated with 3 μL Cas9-RNPs using Nucleocuvette strips in an 

Amaxa 4D-Nucleofector System X-unit (P3 solution, program EO-115). 6 days later, cells 

were re-activated using 2.5 μL Immunocult reagent per mL of media and cultured for 3 

additional days prior to use in downstream assays including HIV challenge.

For donors 3 and 4, primary CD4+ T cells were activated for 2 days with 5 ug/mL soluble 

anti-CD28 (Tonbo Biosceiences) on plates coated overnight with 10 ug/mL anti-CD3 (Tonbo 

Biosciences). Cells were electroporated with Cas9-RNPs as above, except with 300,000 cells 

per condition. crRNA sequences are provided in Supplementary Table 4.

Assessing CRISPR editing efficiency by high-throughput sequencing

To extract DNA from GXRCas9 and primary CD4+ cells, cells were incubated in a lysis 

solution (0.45% NP-40 0.45% Tween 20 200 μg/mL Proteinase K) for 30 min at 55°C and 

then at 95°C for 10 min for protease inactivation. 1–5 μL of the solution was then used as a 

template for PCR amplification with MiSeq-compatible locus-specific primers using Takara 

Ex Taq (Clontech). The PCR products were cleaned and sequenced using an Illumina 

MiSeq.

Isolation of CD11a- primary CD4+ T cells

For the CRISPR-based cell-to-cell transmission assay, primary T cells were edited using 

Cas9-RNPs targeting ITGAL (CD11a) as described above. Immediately prior to HIV 

infection for donors and co-culture for acceptors, cells were labeled with CD11a-PE 

antibody, incubated with MACS microbeads coated with anti-PE antibodies (Miltenyi 

Biotech), and run on an autoMACS Pro Cell Separator (Miltenyi Biotech) using the depl05 

protocol for depletion of CD11a-positive cells. Purity was confirmed by flow cytometry.
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Western blotting

Cells were rinsed once with ice-cold PBS and immediately lysed with Triton lysis buffer 

(1% Triton, 10 mM β-glycerol phosphate, 40 mM Hepes pH 7.4, 2.5 mM MgCl2 and 1 

tablet of EDTA-free protease inhibitor (Roche) per 25 ml buffer). The cell lysates were 

cleared by centrifugation at 18,000xg at 4°C in a microcentrifuge for 15 min, separated on a 

NuPAGE Novex 12% Tris-Glycine gel, and transferred to a polyvinylidene difluoride 

membrane (Millipore). Immunoblots were processed according to standard procedures, 

using primary antibodies directed to RelA and RPS6 and analyzed using enhanced 

chemiluminescence with HRP-conjugated anti-mouse and anti-rabbit secondary antibodies 

(Santa Cruz Biotechnology).

RNA sequencing

Transcriptomic analysis was performed using the strand-specific RNA sequencing protocol 

described previously18. Briefly, total RNA was extracted using the RNeasy Mini kit 

(Qiagen). 5 μg of polyA-selected RNA was fragmented and dephosphorylated after which an 

ssRNA adapter was then ligated. Reverse transcription (RT) was performed using a primer 

complementary to the RNA adapter after which a DNA adapter was ligated onto the 3′ end 

of the resulting cDNA product. The library was then PCR amplified, cleaned, quantified 

using a TapeStation (Agilent) and sequenced on a HiSeq 2500 (Illumina). All primer 

sequences for this protocol have been previously described.

Statistical testing

In all cases, a two-sided Welch’s t-test, a modified Student’s t-test in which equal variance 

between samples is not assumed, was applied to assess statistical significance. A 

significance level (α) of 0.01 was set for all tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A pooled, genome-wide CRISPR screen for HIV host dependency factors (HDFs)
(a) Outline of genome-wide CRISPR screen strategy.

(b) Flow cytometry of cells infected with the HIV-1 strain JR-CSF and expressing GFP as a 

reporter of productive HIV infection. Where indicated, cells are transduced with sgCCR5 or 

an sgRNA that does not target protein-coding sequences in the human genome (non-

targeting control).

(c) Flow cytometry of CD4 and CCR5 surface expression on WT GXRCas9 cells and 

GXRCas9 cells transduced with the genome-wide sgRNA library and serially infected with 

the HIV-1 strain JR-CSF.

(d) Log2-fold change in abundance of the 5th most enriched sgRNA for every gene following 

HIV infection. See also Supplementary Table 1 and Supplementary Fig. 1.

(e) Enrichment of individual sgRNAs for three candidate HDFs and two control genes. 

Values indicate log2-fold change in abundance following HIV infection. Uninfected values 

are from GXRCas9 cells transduced with the genome-wide sgRNA library and cultured for 3 

weeks.
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Figure 2. Loss of TPST2 or SLC35B2 confers strong protection against HIV infection and entry 
without compromising host cell viability
(a) Normal proliferation of TPST2-null and SLC35B2-null GXRCas9 cells compared to 

wild-type cells, non-targeting sgRNA transduced cells, and cells with rescued TPST2 and 

SLC35B2 expression. Error bars represent standard deviation of six replicate wells.

(b) Virus challenge assay with JR-CSF (upper panel) and Rejo.C, a patient-derived 

transmitted/founder strain of HIV (lower panel). Three days following HIV infection (MOI 

= 1), viable, GFP-negative cells were counted and normalized to a mock-infected condition. 

Error bars represent standard deviation of triplicate wells. Error bars, s.d.; triplicate wells; * 

denotes P<0.01, Welch’s t-test. P-values as follows: JR-CSF – TPST2: *, P<0.0001 and ns, 

P=0.0637; SLC35B2: *, P=0.0009 and ns, P=0.9714; Rejo.c – TPST2: *, P=0.0005 and ns, 

P=0.6478; SLC35B2: *, P<0.0001 and ns, P=0.7751.

(c) Confocal microscopy of non-targeting control, TPST2-null, and SLC35B2-null 

GXRCas9 cells following HIV challenge. GFP is a reporter for productive HIV infection. 

Scale bar = 5 μm.

(d) HIV entry assay schematic. β-lactamase-Vpr fusion protein is packaged in HIV virions. 

Target cells are loaded with CCF2, a FRET donor/acceptor pair linked by a β-lactam ring. 

Upon viral fusion, the virus-delivered β-lactamase cleaves off the intracellular FRET 

acceptor, leading to an emission shift.
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(e) HIV entry assay for TPST2-null and SLC35B2-null GXRCas9 cells compared to wild-

type cells, non-targeting control cells, and cells with rescued TPST2 and SLC35B2 
expression. Error bars, s.d.; triplicate wells; * denotes P<0.01, Welch’s t-test. P-values as 

follows: TPST2: *, P<0.0001; SLC35B2: *, P=0.0001.
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Figure 3. SLC35B2 and TPST2 act in a common pathway for sulfation of CCR5
(a) HIV entry assay for GXRCas9 cells cultured in standard media or in sulfate-free media 

with sodium chlorate, an inhibitor of cellular sulfation. Where indicated, heparinase is used 

to remove cell surface heparan sulfates. Error bars, s.d.; triplicate wells; * denotes P<0.01, 

Welch’s t-test. P-values as follows: -Heparinase: *, P=0.0005; +Heparinase: *, P<0.0001.

(b) Schematic of SLC35B2 and TPST2 sulfating CCR5 within the Golgi apparatus.

(c) Flow cytometry of total and sulfated CCR5 surface expression in non-targeting control 

and CCR5-null GXRCas9 cells, and cells with ablated or rescued TPST2 and SLC35B2 

expression.
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Figure 4. Homophilic ALCAM interactions are necessary for GXRCas9 cell aggregation
(a) Flow cytometry of surface ALCAM expression in wild-type GXRCas9 cells and cells 

with ablated or rescued ALCAM expression.

(b) Normal proliferation of ALCAM-null cells compared to wild-type, non-targeting control, 

and ALCAM-rescued cells. Error bars represent standard deviation of six replicate wells.

(c) Virus challenge assay with JR-CSF demonstrating that ALCAM-null cells lack 

protection against HIV infection at an MOI of 1. Error bars, s.d.; triplicate wells; n.s., 

P=0.0308, Welch’s t-test.

(d) Confocal microscopy depicting the cellular aggregation phenotype of GXRCas9 cells 

with wild-type, null, or rescued ALCAM expression. Scale bar = 50 μm.

(e,f) Co-culture assay to distinguish between two models for ALCAM-mediated cell 

aggregation. (e) Assay design with possible outcomes. Mixed aggregates will result from the 

co-culture of wild-type and ALCAM-null cells if aggregates are due to heterophilic 

ALCAM-CD6 interactions while wild-type-only aggregates will result if aggregates are due 
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to homophilic ALCAM-ALCAM interactions. (f) Confocal microscopy demonstrating that 

ALCAM-null cells are not contained within aggregates. Scale bar = 20 μm.

(g) Confocal microscopy of wild-type GXRCas9 cell aggregates for ALCAM (green) and 

DAPI (blue). Scale bar = 10 μm (left) and 3 μm (right).
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Figure 5. Loss of ALCAM protects against cell-to-cell transmission of HIV through disruption of 
cell aggregation. Error bars represent standard deviation of triplicate wells
(a–c) Cell-to-cell HIV transmission assay. (a) Schematic. Acceptor cells are fluorescently 

labeled and co-cultured with unlabeled, infected, wild-type donor cells. After 4 days, the 

number of labeled, GFP-negative, viable cells is assessed by flow cytometry and cell 

counting and normalized to a matching condition where donor cells are not infected. (b) 

Donor cells are wild-type and acceptor cells are as indicated on x-axis labels. Where 

indicated, a 0.45 μm pore size transwell is used to separate donor and acceptor cells for the 

entirety of the 4 day co-culture. Error bars, s.d.; triplicate wells; *, P<0.0001, Welch’s t-test. 

n.s. as follows: B vs D, P=0.2605; E vs F, P=0.3481; E vs G, P=0.8903. (c) Donor cells are 

either null or rescued for ALCAM, and acceptor cells are either wild-type (non-targeting 

control) or null for ALCAM, as indicated. Error bars, s.d.; triplicate wells; *, P=0.0002, 

Welch’s t-test. n.s. as follows: A vs C, P=0.8425; C vs D, P=0.1959.

(d–f) ALCAM-independent cellular aggregation. (d) Schematic. As with the cell-to-cell HIV 

transmission assay, donor cells are infected and co-cultured with labeled acceptor cells. 

Donor and acceptor cells are both ALCAM-null and labeled either with complementary 

oligonucleotides (A and A′) to induce aggregation, or with identical oligonucleotides (A and 

A) as a control. (e) Confocal microscopy of oligonucleotide-conjugated cells. Scale bar = 20 

μm. (f) Results. Error bars, s.d.; triplicate wells; *, p=0.0092, Welch’s t-test. n.s. as follows: 

B vs D, P=0.4479; C vs D, P=0.0334.
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Figure 6. CRISPR-based approach for validation of HIV host dependency factors in primary 
human CD4+ T cells
(a) Schematic. Primary CD4+ T cells are activated using antibodies against CD3 and CD28 

and nucleofected with Cas9-ribonucleoproteins. After 6 days, cells are re-activated for 3 

days and either challenged directly with HIV and sequenced at the sgRNA target site to 

assess mutation frequency, or purified for CD11a- cells using magnetic beads and used in a 

cell-to-cell HIV transmission assay.

(b) Flow cytometry of total and sulfated CCR5 surface expression in primary CD4+ T cells 

transfected with Cas9-RNP complexes. Cells were analyzed at the time of HIV infection.

(c) Insertion/deletion (indel) mutation frequency in primary CD4+ T cells from two donors 

following challenge with JR-CSF or Rejo.C, compared to a mock infection condition. See 

also Supplementary Fig. 4.

(d) Flow cytometry of intracellular HIV Gag in Cas9-RNP transfected primary CD4+ T cells 

from two additional donors. Values are normalized to un-transfected cells for each respective 

virus type. Entry of VSV-G pseudotyped HIV is independent of CD4 and CCR5. Error bars, 

s.d.; triplicate wells; * denotes P<0.01, Welch’s t-test. All * P<0.0001 except Donor 3 

SLC35B2, P=0.0002. n.s., p=0.1715.

(e) Cell-to-cell HIV transmission assay in primary CD4+ T cells transfected with 

Cas9:crITGAL. Assay is set up as in Figure 5 except donor cells are infected 24 hours prior 

to co-culture and co-culture is for 2 days. Readout is by flow cytometry following 
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intracellular staining for HIV Gag. Error bars, s.d.; triplicate wells; P=0.0036, Welch’s t-test. 

See also Supplementary Fig. 6.
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