81 research outputs found
Defective Artemis causes mild telomere dysfunction
This article has been made available through the Brunel Open Access Publishing Fund.Background: Repair of DNA double strand breaks by non-homologous end joining (NHEJ) requires several proteins including Ku, DNA-PKcs, Artemis, XRCC4, Ligase IV and XLF. Two of these proteins, namely Ku and DNA-PKcs, are also involved in maintenance of telomeres, chromosome end-structures. In contrast, cells defective in Ligase IV and XRCC4 do not show changes in telomere length or function suggesting that these proteins are not involved in telomere maintenance. Since a mouse study indicated that defective Artemis may cause telomere dysfunction we investigated the effects of defective Artemis on telomere maintenance in human cells.
Results: We observed significantly elevated frequencies of telomeric fusions in two primary fibroblast cell lines established from Artemis defective patients relative to the control cell line. The frequencies of telomeric fusions increased after exposure of Artemis defective cells to ionizing radiation. Furthermore, we observed increased incidence of DNA damage at telomeres in Artemis defective cells that underwent more than 32 population doublings using the TIF (Telomere dysfunction Induced Foci) assay. We have also inhibited the expression levels of DNA-PKcs in Artemis defective cell lines by either using synthetic inhibitor (IC86621) or RNAi and observed their greater sensitivity to telomere dysfunction relative to control cells.
Conclusion: These results suggest that defective Artemis causes a mild telomere dysfunction phenotype in human cell lines.This article is available through the Brunel Open Access Publishing Fund. This study was supported by a grant from European Commission RISC-RAD contract FI6R-CT2003-50884
Analysis of telomere length and function in radiosensitive mouse and human cells in response to DNA-PKcs inhibition
© 2013 Yasaei et al.; licensee BioMed Central Ltd.This article has been made available through the Brunel Open Access Publishing Fund.Telomeres, the physical ends of chromosomes, play an important role in preserving genomic integrity. This protection is supported by telomere binding proteins collectively known as the shelterin complex. The shelterin complex protects chromosome ends by suppressing DNA damage response and acting as a regulator of telomere length maintenance by telomerase, an enzyme that elongates telomeres. Telomere dysfunction manifests in different forms including chromosomal end-to-end fusion, telomere shortening and p53-dependent apoptosis and/or senescence. An important shelterin-associated protein with critical role in telomere protection in human and mouse cells is the catalytic subunit of DNA-protein kinase (DNA-PKcs). DNA-PKcs deficiency in mouse cells results in elevated levels of spontaneous telomeric fusion, a marker of telomere dysfunction, but does not cause telomere length shortening. Similarly, inhibition of DNA-PKcs with chemical inhibitor, IC86621, prevents chromosomal end protection through mechanism reminiscent of dominant-negative reduction in DNA-PKcs activity.This study was supported by a grant from European Commission RISC-RAD contract FI6R-CT2003-508842 to P
The effect of chemotherapeutic agents on telomere length maintenance in breast cancer cell lines
Copyright @ 2014 the authors. This article is made available through the Brunel Open Access Publishing Fund. It is distributed under the terms of the
Creative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and the source are credited.Mammalian telomeric DNA consists of tandem repeats of the sequence TTAGGG associated with a specialized set of proteins, known collectively as Shelterin. These telosomal proteins protect the ends of chromosomes against end-to-end fusion and degradation. Short telomeres in breast cancer cells confer telomere dysfunction and this can be related to Shelterin proteins and their level of expression in breast cancer cell lines. This study investigates whether expression of Shelterin and Shelterin-associated proteins are altered, and influence the protection and maintenance of telomeres, in breast cancer cells. 5-aza-2'-deoxycytidine (5-aza-CdR) and trichostatin A (TSA) were used in an attempt to reactivate the expression of silenced genes. Our studies have shown that Shelterin and Shelterin-associated genes were down-regulated in breast cancer cell lines; this may be due to epigenetic modification of DNA as the promoter region of POT1 was found to be partially methylated. Shelterin genes expression was up-regulated upon treatment of 21NT breast cancer cells with 5-aza-CdR and TSA. The telomere length of treated 21NT cells was measured by q-PCR showed an increase in telomere length at different time points. Our studies have shown that down-regulation of Shelterin genes is partially due to methylation in some epithelial breast cancer cell lines. Removal of epigenetic silencing results in up-regulation of Shelterin and Shelterin-associated genes which can then lead to telomere length elongation and stability
Effects of BRCA2 deficiency on telomere recombination in non-ALT and ALT cells
This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2011 Sapir et al.Background: Recent studies suggest that BRCA2 affects telomere maintenance. Interestingly, anti cancer treatments that involve BRCA2 and telomerase individually are currently being explored. In the light of the above recent studies their combinatorial targeting may be justified in the development of future treatments. In order to investigate effects of BRCA2 that can be explored for this combinatorial targeting we focused on the analysis of recombination rates at telomeres by monitoring T-SCEs (Telomere Sister Chromatid Exchanges). Results: We observed a significant increase in T-SCE frequencies in four BRCA2 defective human cell lines thus suggesting that BRCA2 suppresses recombination at telomeres. To test this hypothesis further we analyzed T-SCE frequencies in a set of Chinese hamster cell lines with or without functional BRCA2. Our results indicate that introduction of functional BRCA2 normalizes frequencies of T-SCEs thus supporting the notion that BRCA2 suppresses recombination at telomeres. Given that ALT (Alternative Lengthening of Telomeres) positive cells maintain telomeres by recombination we investigated the effect of BRCA2 depletion in these cells. Our results show that this depletion causes a dramatic reduction in T-SCE frequencies in ALT positive cells, but not in non-ALT cells. Conclusion: BRCA2 suppresses recombination at telomeres in cells that maintain them by conventional mechanisms. Furthermore, BRCA2 depletion in ALT positive cells reduces high levels of T-SCEs normally found in these cells. Our results could be potentially important for refining telomerase-based anti-cancer therapies.This work is supported in part by grants from European Commission RISC-RAD contract FI6RCT2003-508842 and British Counci
Telomere elongation in the breast cancer cell line 21NT after treatment with an epigenetic modifying drug
Background: Telomere length dysregulation plays a major role in cancer development and aging. Telomeres are maintained by a group of specialized genes known as shelterin and shelterin-associated proteins. In breast cancer lines it has been shown that shelterin proteins are dysregulated thereby affecting the telomere stability and contributing to the neoplastic conversion of the mammary epithelial cells. Interestingly, the regulation of some of the shelterin genes is thought to be controlled epigenetically. Methods and Results: In this study, we set out to measure the effect of increased shelterin gene expression on telomere length in breast cancer cell line 21NT treated with 5-aza-2-deoxycytidine (5-aza-CdR) using known telomere length assays. We measured telomere lengths using: Telomere Restriction Fragment length (TRF), absolute quantitative-PCR and cytogenetic Interphase Quantitative Fluorescent in situ Hybridization (iQ-FISH). We found that non-cytotoxic levels of 5-aza-CdR affect telomere lengths by causing a significant and stable increase in telomere lengths of the breast cancer cell line. The increase in telomere lengths was consistently observed when various telomere length methods were used. Conclusions: Further investigation is required to understand the underlying mechanism involved, and the significance of telomere length elongation in relation to clinical outcome
when epigenetic modifying drugs are utilized.We thank Professor Robert Newbold for his support and for providing the opportunity to carry out this work within the Institute of Cancer Genetics and Pharmacogenomics, Brunel University London. HY was supported by a triennial project grant (Strategic Award) from the National Centre for Replacement, Refinement, and Reduction (NC3Rs) of animals in research (NC. K500045.1 and G0800697)
Identification of telomere dysfunction in Friedreich ataxia.
Copyright © The Author(s) 2022. Background: Friedreich ataxia (FRDA) is a progressive inherited neurodegenerative disorder caused by mutation of the FXN gene, resulting in decreased frataxin expression, mitochondrial dysfunction and oxidative stress. A recent study has identified shorter telomeres in FRDA patient leukocytes as a possible disease biomarker.
Results: Here we aimed to investigate both telomere structure and function in FRDA cells. Our results confirmed telomere shortening in FRDA patient leukocytes and identified similar telomere shortening in FRDA patient autopsy cerebellar tissues. However, FRDA fibroblasts showed significantly longer telomeres at early passage, occurring in the absence of telomerase activity, but with activation of an alternative lengthening of telomeres (ALT)-like mechanism. These cells also showed accelerated telomere shortening as population doubling increases. Furthermore, telomere dysfunction-induced foci (TIF) analysis revealed that FRDA fibroblasts have dysfunctional telomeres.
Conclusions: Our finding of dysfunctional telomeres in FRDA cells provides further insight into FRDA molecular disease mechanisms, which may have implications for future FRDA therapy.This work was supported by funding from the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement number 242193/EFACTS (CS) and the Wellcome Trust [089757] (SA) to MAP. PG is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre
A mechanistic evaluation of the Syrian hamster embryo cell transformation assay (pH 6.7) and molecular events leading to senescence bypass in SHE cells
The implementation of the Syrian hamster embryo cell transformation assay (SHE CTA) into test batteries and its relevance in predicting carcinogenicity has been long debated. Despite prevalidation studies to ensure reproducibility and minimise the subjective nature of the assay's endpoint, an underlying mechanistic and molecular basis supporting morphological transformation (MT) as an indicator of carcinogenesis is still missing. We found that only 20% of benzo(a)pyrene-induced MT clones immortalised suggesting that, alone, the MT phenotype is insufficient for senescence bypass. From a total of 12 B(a)P- immortalised MT lines, inactivating p53 mutations were identified in 30% of clones, and the majority of these were consistent with the potent carcinogen's mode of action. Expression of p16 was commonly silenced or markedly reduced with extensive promoter methylation observed in 45% of MT clones, while Bmi1 was strongly upregulated in 25% of clones. In instances where secondary events to MT appeared necessary for senescence bypass, as evidenced by a transient cellular crisis, clonal growth correlated with monoallelic deletion of the CDKN2A/B locus. The findings further implicate the importance of p16 and p53 pathways in regulating senescence while providing a molecular evaluation of SHE CTA -derived variant MT clones induced by benzo(a)pyrene
Cell transformation assays for prediction of carcinogenic potential: State of the science and future research needs
Copyright @ 2011 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.Cell transformation assays (CTAs) have long been proposed as in vitro methods for the identification of potential chemical carcinogens. Despite showing good correlation with rodent bioassay data, concerns over the subjective nature of using morphological criteria for identifying transformed cells and a lack of understanding of the mechanistic basis of the assays has limited their acceptance for regulatory purposes. However, recent drivers to find alternative carcinogenicity assessment methodologies, such as the Seventh Amendment to the EU Cosmetics Directive, have fuelled renewed interest in CTAs. Research is currently ongoing to improve the objectivity of the assays, reveal the underlying molecular changes leading to transformation and explore the use of novel cell types. The UK NC3Rs held an international workshop in November 2010 to review the current state of the art in this field and provide directions for future research. This paper outlines the key points highlighted at this meeting
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
Vacancy and Doping States in Monolayer and bulk Black Phosphorus.
The atomic geometries and transition levels of point defects and substitutional dopants in few-layer and bulk black phosphorus are calculated. The vacancy is found to reconstruct in monolayer P to leave a single dangling bond, giving a negative U defect with a +/- transition level at 0.24 eV above the valence band edge. The V(-) state forms an unusual 4-fold coordinated site. In few-layer and bulk black P, the defect becomes a positive U site. The divacancy is much more stable than the monovacancy, and it reconstructs to give no deep gap states. Substitutional dopants such as C, Si, O or S do not give rise to shallow donor or acceptor states but instead reconstruct to form non-doping sites analogous to DX or AX centers in GaAs. Impurities on black P adopt the 8-N rule of bonding, as in amorphous semiconductors, rather than simple substitutional geometries seen in tetrahedral semiconductors
- …