311 research outputs found
Cut Tree Construction from Massive Graphs
The construction of cut trees (also known as Gomory-Hu trees) for a given
graph enables the minimum-cut size of the original graph to be obtained for any
pair of vertices. Cut trees are a powerful back-end for graph management and
mining, as they support various procedures related to the minimum cut, maximum
flow, and connectivity. However, the crucial drawback with cut trees is the
computational cost of their construction. In theory, a cut tree is built by
applying a maximum flow algorithm for times, where is the number of
vertices. Therefore, naive implementations of this approach result in cubic
time complexity, which is obviously too slow for today's large-scale graphs. To
address this issue, in the present study, we propose a new cut-tree
construction algorithm tailored to real-world networks. Using a series of
experiments, we demonstrate that the proposed algorithm is several orders of
magnitude faster than previous algorithms and it can construct cut trees for
billion-scale graphs.Comment: Short version will appear at ICDM'1
Coverage centralities for temporal networks
Structure of real networked systems, such as social relationship, can be
modeled as temporal networks in which each edge appears only at the prescribed
time. Understanding the structure of temporal networks requires quantifying the
importance of a temporal vertex, which is a pair of vertex index and time. In
this paper, we define two centrality measures of a temporal vertex based on the
fastest temporal paths which use the temporal vertex. The definition is free
from parameters and robust against the change in time scale on which we focus.
In addition, we can efficiently compute these centrality values for all
temporal vertices. Using the two centrality measures, we reveal that
distributions of these centrality values of real-world temporal networks are
heterogeneous. For various datasets, we also demonstrate that a majority of the
highly central temporal vertices are located within a narrow time window around
a particular time. In other words, there is a bottleneck time at which most
information sent in the temporal network passes through a small number of
temporal vertices, which suggests an important role of these temporal vertices
in spreading phenomena.Comment: 13 pages, 10 figure
Genetics of symbiosis in Lotus japonicus: Recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci
Development of molecular tools for the analysis of the plant genetic contribution to rhizobial and mycorrhizal symbiosis has provided major advances in our understanding of plant-microbe interactions, and several key symbiotic genes have been identified and characterized. In order to increase the efficiency of genetic analysis in the model legume Lotus japonicus, we present here a selection of improved genetic tools. The two genetic linkage maps previously developed from an interspecific cross between L. japonicus Gifu and L. filicaulis, and an intraspecific cross between the two ecotypes L. japonicus Gifu and L. japonicus MG-20, were aligned through a set of anchor markers. Regions of linkage groups, where genetic resolution is obtained preferentially using one or the other parental combination, are highlighted. Additional genetic resolution and stabilized mapping populations were obtained in recombinant inbred lines derived by a single seed descent from the two populations. For faster mapping of new loci, a selection of reliable markers spread over the chromosome arms provides a common framework for more efficient identification of new alleles and new symbiotic loci among uncharacterized mutant lines. Combining resources from the Lotus community, map positions of a large collection of symbiotic loci are provided together with alleles and closely linked molecular markers. Altogether, this establishes a common genetic resource for Lotus spp. A web-based version will enable this resource to be curated and updated regularly.European Union HPRN-CT-2000-00086, MRTN-CT-2003-505227National Sciences and Engineering Research Council 3277A01Ministerio de Educación y Ciencia BFU2005-0312
Ongoing EEG artifact correction using blind source separation
Objective: Analysis of the electroencephalogram (EEG) for epileptic spike and
seizure detection or brain-computer interfaces can be severely hampered by the
presence of artifacts. The aim of this study is to describe and evaluate a fast
automatic algorithm for ongoing correction of artifacts in continuous EEG
recordings, which can be applied offline and online. Methods: The automatic
algorithm for ongoing correction of artifacts is based on fast blind source
separation. It uses a sliding window technique with overlapping epochs and
features in the spatial, temporal and frequency domain to detect and correct
ocular, cardiac, muscle and powerline artifacts. Results: The approach was
validated in an independent evaluation study on publicly available continuous
EEG data with 2035 marked artifacts. Validation confirmed that 88% of the
artifacts could be removed successfully (ocular: 81%, cardiac: 84%, muscle:
98%, powerline: 100%). It outperformed state-of-the-art algorithms both in
terms of artifact reduction rates and computation time. Conclusions: Fast
ongoing artifact correction successfully removed a good proportion of
artifacts, while preserving most of the EEG signals. Significance: The
presented algorithm may be useful for ongoing correction of artifacts, e.g., in
online systems for epileptic spike and seizure detection or brain-computer
interfaces.Comment: 16 pages, 4 figures, 3 table
Solar System Exploration Sciences by EQUULEUS on SLS EM-1 and Science Instruments Development Status
EQUULEUS is a spacecraft to explore the cislunar region including the Earth-Moon Lagrange point L2 (EML2) and will be launched by NASA’s SLS EM-1 rocket. Although the size of EQUULEUS is only 6U, the spacecraft carries three different science instruments. By using these instruments, the spacecraft will demonstrate three missions for solar system exploration science during and after the flight to EML2; imaging of the plasmasphere around the earth, observation of space dust flux in the cislunar region, and observation of lunar impact flashes at the far side of the moon. The developments and verifications of the flight models of these science instruments were completed by the end of 2018, and we started flight model integration and testing. This paper introduces the details of the scientific objectives, design results and development statuses of the instruments. In addition, results of the integration and pre-flight tests are also described
C/EBPβ Promotes Transition from Proliferation to Hypertrophic Differentiation of Chondrocytes through Transactivation of p57Kip2
BACKGROUND: Although transition from proliferation to hypertrophic differentiation of chondrocytes is a crucial step for endochondral ossification in physiological skeletal growth and pathological disorders like osteoarthritis, the underlying mechanism remains an enigma. This study investigated the role of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) in chondrocytes during endochondral ossification. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryos with homozygous deficiency in C/EBPbeta (C/EBPbeta-/-) exhibited dwarfism with elongated proliferative zone and delayed chondrocyte hypertrophy in the growth plate cartilage. In the cultures of primary C/EBPbeta-/- chondrocytes, cell proliferation was enhanced while hypertrophic differentiation was suppressed. Contrarily, retroviral overexpression of C/EBPbeta in chondrocytes suppressed the proliferation and enhanced the hypertrophy, suggesting the cell cycle arrest by C/EBPbeta. In fact, a DNA cell cycle histogram revealed that the C/EBPbeta overexpression caused accumulation of cells in the G0/G1 fraction. Among cell cycle factors, microarray and real-time RT-PCR analyses have identified the cyclin-dependent kinase inhibitor p57(Kip2) as the transcriptional target of C/EBPbeta. p57(Kip2) was co-localized with C/EBPbeta in late proliferative and pre-hypertrophic chondrocytes of the mouse growth plate, which was decreased by the C/EBPbeta deficiency. Luciferase-reporter and electrophoretic mobility shift assays identified the core responsive element of C/EBPbeta in the p57(Kip2) promoter between -150 and -130 bp region containing a putative C/EBP motif. The knockdown of p57(Kip2) by the siRNA inhibited the C/EBPbeta-induced chondrocyte hypertrophy. Finally, when we created the experimental osteoarthritis model by inducing instability in the knee joints of adult mice of wild-type and C/EBPbeta+/- littermates, the C/EBPbeta insufficiency caused resistance to joint cartilage destruction. CONCLUSIONS/SIGNIFICANCE: C/EBPbeta transactivates p57(Kip2) to promote transition from proliferation to hypertrophic differentiation of chondrocytes during endochondral ossification, suggesting that the C/EBPbeta-p57(Kip2) signal would be a therapeutic target of skeletal disorders like growth retardation and osteoarthritis
Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions
We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
- …