21 research outputs found

    A higher-order entity formed by the flexible assembly of RAP1 with TRF2

    Get PDF
    Essonne committee of the Ligue contre le cancer M18756 M22897 Foundation ARC pour la Recherche sur le Cancer SFI20121205503International audienceTelomere integrity is essential to maintain genome stability, and telomeric dysfunctions are associated with cancer and aging pathologies. In human, the shelterin complex binds TTAGGG DNA repeats and provides capping to chromosome ends. Within shel-terin, RAP1 is recruited through its interaction with TRF2, and TRF2 is required for telomere protection through a network of nucleic acid and protein interactions. RAP1 is one of the most conserved shelterin proteins although one unresolved question is how its interaction may influence TRF2 properties and regulate its capacity to bind multiple proteins. Through a combination of biochemical, biophysical and structural approaches, we unveiled a unique mode of assembly between RAP1 and TRF2. The complete interaction scheme between the full-length proteins involves a complex biphasic interaction of RAP1 that directly affects the binding properties of the assembly. These results reveal how a non-DNA binding protein can influence the properties of a DNA-binding partner by mutual conformational adjustments

    The N-terminal domains of TRF1 and TRF2 regulate their ability to condense telomeric DNA

    Get PDF
    TRF1 and TRF2 are key proteins in human telomeres, which, despite their similarities, have different behaviors upon DNA binding. Previous work has shown that unlike TRF1, TRF2 condenses telomeric, thus creating consequential negative torsion on the adjacent DNA, a property that is thought to lead to the stimulation of single-strand invasion and was proposed to favor telomeric DNA looping. In this report, we show that these activities, originating from the central TRFH domain of TRF2, are also displayed by the TRFH domain of TRF1 but are repressed in the full-length protein by the presence of an acidic domain at the N-terminus. Strikingly, a similar repression is observed on TRF2 through the binding of a TERRA-like RNA molecule to the N-terminus of TRF2. Phylogenetic and biochemical studies suggest that the N-terminal domains of TRF proteins originate from a gradual extension of the coding sequences of a duplicated ancestral gene with a consequential progressive alteration of the biochemical properties of these proteins. Overall, these data suggest that the N-termini of TRF1 and TRF2 have evolved to finely regulate their ability to condense DNA

    5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases

    Get PDF
    DNA base-damage recognition in the base excision repair (BER) is a process operating on a wide variety of alkylated, oxidized and degraded bases. DNA glycosylases are the key enzymes which initiate the BER pathway by recognizing and excising the base damages guiding the damaged DNA through repair synthesis. We report here biochemical and structural evidence for the irreversible entrapment of DNA glycosylases by 5-hydroxy-5-methylhydantoin, an oxidized thymine lesion. The first crystal structure of a suicide complex between DNA glycosylase and unrepaired DNA has been solved. In this structure, the formamidopyrimidine-(Fapy) DNA glycosylase from Lactococcus lactis (LlFpg/LlMutM) is covalently bound to the hydantoin carbanucleoside-containing DNA. Coupling a structural approach by solving also the crystal structure of the non-covalent complex with site directed mutagenesis, this atypical suicide reaction mechanism was elucidated. It results from the nucleophilic attack of the catalytic N-terminal proline of LlFpg on the C5-carbon of the base moiety of the hydantoin lesion. The biological significance of this finding is discussed

    C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-ones: Studies towards the identification of potent, cell penetrant Jumonji C domain containing histone lysine demethylase 4 subfamily (KDM4) inhibitors, compound profiling in cell-based target engagement assays

    Get PDF
    Residues in the histone substrate binding sites that differ between the KDM4 and KDM5 subfamilies were identified. Subsequently, a C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one series was designed to rationally exploit these residue differences between the histone substrate binding sites in order to improve affinity for the KDM4-subfamily over KDM5-subfamily enzymes. In particular, residues E169 and V313 (KDM4A numbering) were targeted. Additionally, the conformational restriction of the flexible pyridopyrimidinone C8-substituent was investigated. These approaches yielded potent and cell-penetrant dual KDM4/5-subfamily inhibitors including 19a (KDM4A and KDM5B Ki = 0.004 and 0.007â€ŻÎŒM, respectively). Compound cellular profiling in two orthogonal target engagement assays revealed a significant reduction from biochemical to cell-based activity across multiple analogues; this decrease was shown to be consistent with 2OG competition, and suggest that sub-nanomolar biochemical potency will be required with C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one compounds to achieve sub-micromolar target inhibition in cells

    Structural and functional study of the recognition and metabolization of puric and pyrimidic DNA lesions by the Formamidopyrimidine-DNA glycosylase

    Get PDF
    Les oxydations sur les bases nuclĂ©iques constituent l’une des sources principale d’apparition de lĂ©sions sur l’ADN, qui peuvent ĂȘtre mutagĂšnes ou lĂ©tales pour les cellules en l’absence de rĂ©paration de l’ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du systĂšme de rĂ©paration de l’ADN par excision de base (BER), initie la rĂ©paration d’un large panel de lĂ©sions de ce type via ses activitĂ©s ADN glycosylase (excision de la base oxydĂ©e) et AP lyase (clivage du site abasique par ß,d-Ă©limination). Nous avons rĂ©alisĂ© des Ă©tudes fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de prĂ©ciser la spĂ©cificitĂ© de substrat et le mĂ©canisme catalytique de Fpg. Ainsi, nous avons pu mettre en Ă©vidence des dĂ©terminants structuraux permettant Ă  cette enzyme d’accommoder des lĂ©sions de tailles trĂšs diffĂ©rentes dans son site actif, en l’occurrence des rĂ©sidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substituĂ©s ou non en N7 par des adduits encombrants. D’autre part, nous avons caractĂ©risĂ© structuralement et fonctionnellement la reconnaissance et l’excision par Fpg d’une lĂ©sion pyrimidique, la 5-hydroxy-5-mĂ©thyle-hydantoĂŻne (Hyd). Ainsi, nous avons montrĂ© que cette lĂ©sion appariĂ©e Ă  une cytosine Ă©tait un bon substrat pour l’enzyme, et nous avons prĂ©cisĂ© structuralement le mode de reconnaissance de l’Hyd par Fpg. D’autre part, nous avons mis en Ă©vidence un comportement inattendu de l’enzyme sur ce substrat. En l’occurrence, nous avons montrĂ© biochimiquement et structuralement qu’un pontage covalent se formait en quantitĂ©s non nĂ©gligeables entre Fpg et l’Hyd dans des conditions physiologiques.Oxidations on nucleic bases constitute one of the major sources of DNA lesions appearance, which can be mutagenic or lethal for cells in the absence of DNA repair. The prokaryotic Formamidopyrimidine-DNA glycosylase (Fpg), a base excision DNA repair (BER) enzyme, initiate the repair of a wide range of such lesions via its DNA glycosylase (excision of the oxidized base) and AP lyase (cleavage of the AP site by ß,d-elimination) activities. We carried out functional studies by biochemical techniques and structural studies by X-ray crystallography so as to state Fpg’s substrate specificity and catalytic mechanism. Thus, we have been able to underline the structural determinants enabling this enzyme to accommodate lesions of very different sizes in its active site, in this case 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) residues N7-substituted or not by bulky adducts. On the other hand, we structurally and functionally characterized the recognition and excision by Fpg of a pyrimidic lesion, the 5-hydroxy-5-methyl-hydantoin (Hyd). Thus, we have shown that this lesion paired with a cytosine was a good substrate for the enzyme, and stated structurally the recognition mode of Hyd by Fpg. On the other hand, we have underlined an unexpected behaviour of the enzyme on this substrate. In this case, we have biochemically and structurally shown that a covalent link was formed in sizeable quantities between Fpg and Hyd in physiological conditions

    Structural and functional study of the recognition and metabolization of puric and pyrimidic DNA lesions by the Formamidopyrimidine-DNA glycosylase

    No full text
    Les oxydations sur les bases nuclĂ©iques constituent l’une des sources principale d’apparition de lĂ©sions sur l’ADN, qui peuvent ĂȘtre mutagĂšnes ou lĂ©tales pour les cellules en l’absence de rĂ©paration de l’ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du systĂšme de rĂ©paration de l’ADN par excision de base (BER), initie la rĂ©paration d’un large panel de lĂ©sions de ce type via ses activitĂ©s ADN glycosylase (excision de la base oxydĂ©e) et AP lyase (clivage du site abasique par ß,d-Ă©limination). Nous avons rĂ©alisĂ© des Ă©tudes fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de prĂ©ciser la spĂ©cificitĂ© de substrat et le mĂ©canisme catalytique de Fpg. Ainsi, nous avons pu mettre en Ă©vidence des dĂ©terminants structuraux permettant Ă  cette enzyme d’accommoder des lĂ©sions de tailles trĂšs diffĂ©rentes dans son site actif, en l’occurrence des rĂ©sidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substituĂ©s ou non en N7 par des adduits encombrants. D’autre part, nous avons caractĂ©risĂ© structuralement et fonctionnellement la reconnaissance et l’excision par Fpg d’une lĂ©sion pyrimidique, la 5-hydroxy-5-mĂ©thyle-hydantoĂŻne (Hyd). Ainsi, nous avons montrĂ© que cette lĂ©sion appariĂ©e Ă  une cytosine Ă©tait un bon substrat pour l’enzyme, et nous avons prĂ©cisĂ© structuralement le mode de reconnaissance de l’Hyd par Fpg. D’autre part, nous avons mis en Ă©vidence un comportement inattendu de l’enzyme sur ce substrat. En l’occurrence, nous avons montrĂ© biochimiquement et structuralement qu’un pontage covalent se formait en quantitĂ©s non nĂ©gligeables entre Fpg et l’Hyd dans des conditions physiologiques.Oxidations on nucleic bases constitute one of the major sources of DNA lesions appearance, which can be mutagenic or lethal for cells in the absence of DNA repair. The prokaryotic Formamidopyrimidine-DNA glycosylase (Fpg), a base excision DNA repair (BER) enzyme, initiate the repair of a wide range of such lesions via its DNA glycosylase (excision of the oxidized base) and AP lyase (cleavage of the AP site by ß,d-elimination) activities. We carried out functional studies by biochemical techniques and structural studies by X-ray crystallography so as to state Fpg’s substrate specificity and catalytic mechanism. Thus, we have been able to underline the structural determinants enabling this enzyme to accommodate lesions of very different sizes in its active site, in this case 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) residues N7-substituted or not by bulky adducts. On the other hand, we structurally and functionally characterized the recognition and excision by Fpg of a pyrimidic lesion, the 5-hydroxy-5-methyl-hydantoin (Hyd). Thus, we have shown that this lesion paired with a cytosine was a good substrate for the enzyme, and stated structurally the recognition mode of Hyd by Fpg. On the other hand, we have underlined an unexpected behaviour of the enzyme on this substrate. In this case, we have biochemically and structurally shown that a covalent link was formed in sizeable quantities between Fpg and Hyd in physiological conditions

    Étude structurale et fonctionnelle de la reconnaissance et de la mĂ©tabolisation de lĂ©sions puriques et pyrimidiques dans l'ADN par la Formamidopyrimidine-ADN glycosylase

    No full text
    Oxidations on nucleic bases constitute one of the major sources of DNA lesions appearance, which can be mutagenic or lethal for cells in the absence of DNA repair. The prokaryotic Formamidopyrimidine-DNA glycosylase (Fpg), a base excision DNA repair (BER) enzyme, initiate the repair of a wide range of such lesions via its DNA glycosylase (excision of the oxidized base) and AP lyase (cleavage of the AP site by ÎČ,ÎŽ-elimination) activities. We carried out functional studies by biochemical techniques and structural studies by X-ray crystallography so as to state Fpg's substrate specificity and catalytic mechanism. Thus, we have been able to underline the structural determinants enabling this enzyme to accommodate lesions of very different sizes in its active site, in this case 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) residues N7-substituted or not by bulky adducts. On the other hand, we structurally and functionally characterized the recognition and excision by Fpg of a pyrimidic lesion, the 5-hydroxy-5-methyl-hydantoin (Hyd). Thus, we have shown that this lesion paired with a cytosine was a good substrate for the enzyme, and stated structurally the recognition mode of Hyd by Fpg. On the other hand, we have underlined an unexpected behaviour of the enzyme on this substrate. In this case, we have biochemically and structurally shown that a covalent link was formed in sizeable quantities between Fpg and Hyd in physiological conditions.Les oxydations sur les bases nuclĂ©iques constituent l'une des sources principale d'apparition de lĂ©sions sur l'ADN, qui peuvent ĂȘtre mutagĂšnes ou lĂ©tales pour les cellules en l'absence de rĂ©paration de l'ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du systĂšme de rĂ©paration de l'ADN par excision de base (BER), initie la rĂ©paration d'un large panel de lĂ©sions de ce type via ses activitĂ©s ADN glycosylase (excision de la base oxydĂ©e) et AP lyase (clivage du site abasique par ÎČ,ÎŽ-Ă©limination). Nous avons rĂ©alisĂ© des Ă©tudes fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de prĂ©ciser la spĂ©cificitĂ© de substrat et le mĂ©canisme catalytique de Fpg. Ainsi, nous avons pu mettre en Ă©vidence des dĂ©terminants structuraux permettant Ă  cette enzyme d'accommoder des lĂ©sions de tailles trĂšs diffĂ©rentes dans son site actif, en l'occurrence des rĂ©sidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substituĂ©s ou non en N7 par des adduits encombrants. D'autre part, nous avons caractĂ©risĂ© structuralement et fonctionnellement la reconnaissance et l'excision par Fpg d'une lĂ©sion pyrimidique, la 5-hydroxy-5-mĂ©thyle-hydantoĂŻne (Hyd). Ainsi, nous avons montrĂ© que cette lĂ©sion appariĂ©e Ă  une cytosine Ă©tait un bon substrat pour l'enzyme, et nous avons prĂ©cisĂ© structuralement le mode de reconnaissance de l'Hyd par Fpg. D'autre part, nous avons mis en Ă©vidence un comportement inattendu de l'enzyme sur ce substrat. En l'occurrence, nous avons montrĂ© biochimiquement et structuralement qu'un pontage covalent se formait en quantitĂ©s non nĂ©gligeables entre Fpg et l'Hyd dans des conditions physiologiques. Mots clĂ©s : RĂ©paration de l'ADN; RĂ©paration par excision de base; Formamidopyrimidine-ADN glycosylase; 2,6- diamino-4-hydroxy-5-formamidopyrimidine; 7,8-dihydro-8-oxo-guanine; 5-hydroxy-5-mĂ©thyle-hydantoĂŻne

    Etude structurale et fonctionnelle de la reconnaissance et de la métabolisation de lésions puriques et pyrimidiques dans l'ADN par la Formamidopyrimidine-ADN glycosylase

    No full text
    Les oxydations sur les bases nuclĂ©iques constituent l une des sources principale d apparition de lĂ©sions sur l ADN, qui peuvent ĂȘtre mutagĂšnes ou lĂ©tales pour les cellules en l absence de rĂ©paration de l ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du systĂšme de rĂ©paration de l ADN par excision de base (BER), initie la rĂ©paration d un large panel de lĂ©sions de ce type via ses activitĂ©s ADN glycosylase (excision de la base oxydĂ©e) et AP lyase (clivage du site abasique par ß,d-Ă©limination). Nous avons rĂ©alisĂ© des Ă©tudes fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de prĂ©ciser la spĂ©cificitĂ© de substrat et le mĂ©canisme catalytique de Fpg. Ainsi, nous avons pu mettre en Ă©vidence des dĂ©terminants structuraux permettant Ă  cette enzyme d accommoder des lĂ©sions de tailles trĂšs diffĂ©rentes dans son site actif, en l occurrence des rĂ©sidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substituĂ©s ou non en N7 par des adduits encombrants. D autre part, nous avons caractĂ©risĂ© structuralement et fonctionnellement la reconnaissance et l excision par Fpg d une lĂ©sion pyrimidique, la 5-hydroxy-5-mĂ©thyle-hydantoĂŻne (Hyd). Ainsi, nous avons montrĂ© que cette lĂ©sion appariĂ©e Ă  une cytosine Ă©tait un bon substrat pour l enzyme, et nous avons prĂ©cisĂ© structuralement le mode de reconnaissance de l Hyd par Fpg. D autre part, nous avons mis en Ă©vidence un comportement inattendu de l enzyme sur ce substrat. En l occurrence, nous avons montrĂ© biochimiquement et structuralement qu un pontage covalent se formait en quantitĂ©s non nĂ©gligeables entre Fpg et l Hyd dans des conditions physiologiques.Oxidations on nucleic bases constitute one of the major sources of DNA lesions appearance, which can be mutagenic or lethal for cells in the absence of DNA repair. The prokaryotic Formamidopyrimidine-DNA glycosylase (Fpg), a base excision DNA repair (BER) enzyme, initiate the repair of a wide range of such lesions via its DNA glycosylase (excision of the oxidized base) and AP lyase (cleavage of the AP site by ß,d-elimination) activities. We carried out functional studies by biochemical techniques and structural studies by X-ray crystallography so as to state Fpg s substrate specificity and catalytic mechanism. Thus, we have been able to underline the structural determinants enabling this enzyme to accommodate lesions of very different sizes in its active site, in this case 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) residues N7-substituted or not by bulky adducts. On the other hand, we structurally and functionally characterized the recognition and excision by Fpg of a pyrimidic lesion, the 5-hydroxy-5-methyl-hydantoin (Hyd). Thus, we have shown that this lesion paired with a cytosine was a good substrate for the enzyme, and stated structurally the recognition mode of Hyd by Fpg. On the other hand, we have underlined an unexpected behaviour of the enzyme on this substrate. In this case, we have biochemically and structurally shown that a covalent link was formed in sizeable quantities between Fpg and Hyd in physiological conditions.ORLEANS-SCD-Bib. electronique (452349901) / SudocSudocFranceF

    Bacterial base excision repair enzyme Fpg recognizes bulky N7-substituted-FapydG lesion via unproductive binding mode

    No full text
    Fpg is a bacterial base excision repair enzyme that removes oxidized purines from DNA. This work shows that Fpg and its eukaryote homolog Ogg1 recognize with high affinity FapydG and bulky N7-benzyl-FapydG (Bz-FapydG). The comparative crystal structure analysis of stable complexes between Fpg and carbocyclic cFapydG or Bz-cFapydG nucleoside-containing DNA provides the molecular basis of the ability of Fpg to bind both lesions with the same affinity and to differently process them. To accommodate the steric hindrance of the benzyl group, Fpg selects the adequate rotamer of the extrahelical Bz-cFapydG formamido group, forcing the bulky group to go outside the binding pocket. Contrary to the binding mode of cFapydG, the particular recognition of Bz-cFapydG leads the BER enzymes to unproductive complexes which would hide the lesion and slow down its repair by the NER machinery

    Bacterial base excision repair enzyme Fpg recognizes bulky N7-substituted-FapydG lesion via unproductive binding mode.

    Get PDF
    International audienceFpg is a bacterial base excision repair enzyme that removes oxidized purines from DNA. This work shows that Fpg and its eukaryote homolog Ogg1 recognize with high affinity FapydG and bulky N7-benzyl-FapydG (Bz-FapydG). The comparative crystal structure analysis of stable complexes between Fpg and carbocyclic cFapydG or Bz-cFapydG nucleoside-containing DNA provides the molecular basis of the ability of Fpg to bind both lesions with the same affinity and to differently process them. To accommodate the steric hindrance of the benzyl group, Fpg selects the adequate rotamer of the extrahelical Bz-cFapydG formamido group, forcing the bulky group to go outside the binding pocket. Contrary to the binding mode of cFapydG, the particular recognition of Bz-cFapydG leads the BER enzymes to unproductive complexes which would hide the lesion and slow down its repair by the NER machinery
    corecore