242 research outputs found

    Density matrix algorithm for the calculation of dynamical properties of low dimensional systems

    Full text link
    I extend the scope of the density matrix renormalization group technique developed by White to the calculation of dynamical correlation functions. As an application and performance evaluation I calculate the spin dynamics of the 1D Heisenberg chain.Comment: 4 pages + 4 figures in one Latex + 4 postscript file

    PRODH Polymorphisms, Cortical Volumes and Thickness in Schizophrenia

    Get PDF
    Schizophrenia is a neurodevelopmental disorder with high heritability. Several lines of evidence indicate that the PRODH gene may be related to the disorder. Therefore, our study investigates the effects of 12 polymorphisms of PRODH on schizophrenia and its phenotypes. To further evaluate the roles of the associated variants in the disorder, we have conducted magnetic resonance imaging (MRI) scans to assess cortical volumes and thicknesses. A total of 192 patients were evaluated using the Structured Clinical Interview for DSM-IV (SCID), Positive and Negative Syndrome Scale (PANSS), Calgary Depression Scale, Global Assessment of Functioning (GAF) and Clinical Global Impression (CGI) instruments. the study included 179 controls paired by age and gender. the samples were genotyped using the real-time polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP)-PCR and Sanger sequencing methods. A sample of 138 patients and 34 healthy controls underwent MRI scans. One polymorphism was associated with schizophrenia (rs2904552), with the G-allele more frequent in patients than in controls. This polymorphism is likely functional, as predicted by PolyPhen and SIFT, but it was not associated with brain morphology in our study. in summary, we report a functional PRODH variant associated with schizophrenia that may have a neurochemical impact, altering brain function, but is not responsible for the cortical reductions found in the disorder.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo UNIFESP, Disciplina Genet, Dept Morfol & Genet, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, LiNC, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Psiquiatria, São Paulo, BrazilFac Med ABC FMABC, Dept Ginecol & Obstet, Disciplina Genet & Reprod Humana, São Paulo, BrazilFed Univ Para, Lab Genet Humana & Med, BR-66059 Belem, Para, BrazilUniv Fed ABC, Ctr Math Computat & Cognit, Santo Andre, BrazilUniversidade Federal de São Paulo UNIFESP, Disciplina Genet, Dept Morfol & Genet, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, LiNC, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Psiquiatria, São Paulo, BrazilFAPESP: 2011/50740-5FAPESP: 2007/58736-1Web of Scienc

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Angiotensin-(1–7) infusion is associated with increased blood pressure and adverse cardiac remodelling in rats with subtotal nephrectomy

    Get PDF
    ACE (angiotensin-converting enzyme) 2 is expressed in the heart and kidney and metabolizes Ang (angiotensin) II to Ang-(1–7) a peptide that acts via the Ang-(1–7) or mas receptor. The aim of the present study was to assess the effect of Ang-(1–7) on blood pressure and cardiac remodelling in a rat model of renal mass ablation. Male SD (Sprague–Dawley) rats underwent STNx (subtotal nephrectomy) and were treated for 10 days with vehicle, the ACE inhibitor ramipril (oral 1 mg·kg−1 of body weight·day−1) or Ang-(1–7) (subcutaneous 24 μg·kg−1 of body weight·h−1) (all n = 15 per group). A control group (n = 10) of sham-operated rats were also studied. STNx rats were hypertensive (P<0.01) with renal impairment (P<0.001), cardiac hypertrophy (P<0.001) and fibrosis (P<0.05), and increased cardiac ACE (P<0.001) and ACE2 activity (P<0.05). Ramipril reduced blood pressure (P<0.01), improved cardiac hypertrophy (P<0.001) and inhibited cardiac ACE (P<0.001). By contrast, Ang-(1–7) infusion in STNx was associated with further increases in blood pressure (P<0.05), cardiac hypertrophy (P<0.05) and fibrosis (P<0.01). Ang-(1–7) infusion also increased cardiac ACE activity (P<0.001) and reduced cardiac ACE2 activity (P<0.05) compared with STNx-vehicle rats. Our results add to the increasing evidence that Ang-(1–7) may have deleterious cardiovascular effects in kidney failure and highlight the need for further in vivo studies of the ACE2/Ang-(1–7)/mas receptor axis in kidney disease

    A new methodology for automating acoustic emission detection of metallic fatigue fractures in highly demanding aerospace environments: An overview

    Get PDF
    The acoustic emission (AE) phenomenon has many attributes that make it desirable as a structural health monitoring or non-destructive testing technique, including the capability to continuously and globally monitor large structures using a sparse sensor array and with no dependency on defect size. However, AE monitoring is yet to fulfil its true potential, due mainly to limitations in location accuracy and signal characterisation that often arise in complex structures with high levels of background noise. Furthermore, the technique has been criticised for a lack of quantitative results and the large amount of operator interpretation required during data analysis. This paper begins by introducing the challenges faced in developing an AE based structural health monitoring system and then gives a review of previous progress made in addresing these challenges. Subsequently an overview of a novel methodology for automatic detection of fatigue fractures in complex geometries and noisy environments is presented, which combines a number of signal processing techniques to address the current limitations of AE monitoring. The technique was developed for monitoring metallic landing gear components during pre-flight certification testing and results are presented from a full-scale steel landing gear component undergoing fatigue loading. Fracture onset was successfully identify automatically at 49,000 fatigue cycles prior to final failure (validated by the use of dye penetrant inspection) and the fracture position was located to within 10. mm of the actual location

    Genetic Variants in TGF-β Pathway Are Associated with Ovarian Cancer Risk

    Get PDF
    The transforming growth factor-β (TGF-β) signaling pathway is involved in a diverse array of cellular processes responsible for tumorigenesis. In this case-control study, we applied a pathway-based approach to evaluate single-nucleotide polymorphisms (SNPs) in the TGF-β signaling pathway as predictors of ovarian cancer risk. We systematically genotyped 218 SNPs from 21 genes in the TGF-β signaling pathway in 417 ovarian cancer cases and 417 matched control subjects. We analyzed the associations of these SNPs with ovarian cancer risk, performed haplotype analysis and identified potential cumulative effects of genetic variants. We also performed analysis to identify higher-order gene-gene interactions influencing ovarian cancer risk. Individual SNP analysis showed that the most significant SNP was SMAD6: rs4147407, with an adjusted odds ratio (OR) of 1.60 (95% confidence interval [CI], 1.14–2.24, P = 0.0066). Cumulative genotype analysis of 13 SNPs with significant main effects exhibited a clear dose-response trend of escalating risk with increasing number of unfavorable genotypes. In gene-based analysis, SMAD6 was identified as the most significant gene associated with ovarian cancer risk. Haplotype analysis further revealed that two haplotype blocks within SMAD6 were significantly associated with decreased ovarian cancer risk, as compared to the most common haplotype. Gene-gene interaction analysis further categorized the study population into subgroups with different ovarian cancer risk. Our findings suggest that genetic variants in the TGF-β signaling pathway are associated with ovarian cancer risk and may facilitate the identification of high-risk subgroups in the general population

    An Accessory to the ‘Trinity’: SR-As Are Essential Pathogen Sensors of Extracellular dsRNA, Mediating Entry and Leading to Subsequent Type I IFN Responses

    Get PDF
    Extracellular RNA is becoming increasingly recognized as a signaling molecule. Virally derived double stranded (ds)RNA released into the extracellular space during virus induced cell lysis acts as a powerful inducer of classical type I interferon (IFN) responses; however, the receptor that mediates this response has not been identified. Class A scavenger receptors (SR-As) are likely candidates due to their cell surface expression and ability to bind nucleic acids. In this study, we investigated a possible role for SR-As in mediating type I IFN responses induced by extracellular dsRNA in fibroblasts, a predominant producer of IFNβ. Fibroblasts were found to express functional SR-As, even SR-A species thought to be macrophage specific. SR-A specific competitive ligands significantly blocked extracellular dsRNA binding, entry and subsequent interferon stimulated gene (ISG) induction. Candidate SR-As were systematically investigated using RNAi and the most dramatic inhibition in responses was observed when all candidate SR-As were knocked down in unison. Partial inhibition of dsRNA induced antiviral responses was observed in vivo in SR-AI/II-/- mice compared with WT controls. The role of SR-As in mediating extracellular dsRNA entry and subsequent induced antiviral responses was observed in both murine and human fibroblasts. SR-As appear to function as ‘carriers’, facilitating dsRNA entry and delivery to the established dsRNA sensing receptors, specifically TLR3, RIGI and MDA-5. Identifying SR-As as gatekeepers of the cell, mediating innate antiviral responses, represents a novel function for this receptor family and provides insight into how cells recognize danger signals associated with lytic virus infections. Furthermore, the implications of a cell surface receptor capable of recognizing extracellular RNA may exceed beyond viral immunity to mediating other important innate immune functions

    Human MLH1 Protein Participates in Genomic Damage Checkpoint Signaling in Response to DNA Interstrand Crosslinks, while MSH2 Functions in DNA Repair

    Get PDF
    DNA interstrand crosslinks (ICLs) are among the most toxic types of damage to a cell. For this reason, many ICL-inducing agents are effective therapeutic agents. For example, cisplatin and nitrogen mustards are used for treating cancer and psoralen plus UVA (PUVA) is useful for treating psoriasis. However, repair mechanisms for ICLs in the human genome are not clearly defined. Previously, we have shown that MSH2, the common subunit of the human MutSα and MutSβ mismatch recognition complexes, plays a role in the error-free repair of psoralen ICLs. We hypothesized that MLH1, the common subunit of human MutL complexes, is also involved in the cellular response to psoralen ICLs. Surprisingly, we instead found that MLH1-deficient human cells are more resistant to psoralen ICLs, in contrast to the sensitivity to these lesions displayed by MSH2-deficient cells. Apoptosis was not as efficiently induced by psoralen ICLs in MLH1-deficient cells as in MLH1-proficient cells as determined by caspase-3/7 activity and binding of annexin V. Strikingly, CHK2 phosphorylation was undetectable in MLH1-deficient cells, and phosphorylation of CHK1 was reduced after PUVA treatment, indicating that MLH1 is involved in signaling psoralen ICL-induced checkpoint activation. Psoralen ICLs can result in mutations near the crosslinked sites; however, MLH1 function was not required for the mutagenic repair of these lesions, and so its signaling function appears to have a role in maintaining genomic stability following exposure to ICL-induced DNA damage. Distinguishing the genetic status of MMR-deficient tumors as MSH2-deficient or MLH1-deficient is thus potentially important in predicting the efficacy of treatment with psoralen and perhaps with other ICL-inducing agents
    corecore