720 research outputs found

    Assessment of Colobanthus quitensis genetic polymorphism from the Argentine Islands region (maritime Antarctic) by actin, α- and γ-tubulin gene intron analysis

    Get PDF
    Colobanthus quitensis is one of the two angiosperm plant species commonly spread in the Antarctic. The species has been extensively analyzed at morphological, anatomical and physiological levels, but information regarding its genetic vari-ability remains limited. The aim of the study was to identify molecular genetic differences between C. quitensis populations in one of the Antarctic localities, the Argentine Islands region by estimating the intron length polymorphism of actin, α- and γ-tubulin genes. Samples of C. quitensis from different Antarctic natural populations were collected during the season of the 24th and previous Ukrainian Antarctic expeditions. Total DNA was isolated using the QIAGEN DNeasy Plant Mini Kit. The polymerase chain reaction was carried out with our own degenerate primers. The resulting amplicons were separated and visualized using polyacrylamide gel electrophoresis followed by silver nitrate staining. Molecular genetic analysis of natural populations of C. quitensis was performed using three DNA-marker systems based on the detection of intron length polymor-phism of actin, α- and γ-tubulin genes. A low level of genetic polymorphism of C. quitensis in the studied region by these types of markers was established. By assessing the intron length polymorphism of actin genes of the studied C. quitensis populations it was possible to establish that the populations of Skua Island had unique amplicons characteristic only for this location. This indicates the possibility of further use of the analysis of intron length polymorphism of actin genes for the study of the molecu-lar genetic diversity of the Antarctic pearlwort. At the same time, the results of analysis of the intron length polymorphism of α- and γ-tubulin genes induce selection of more specific primers, taking into account the structure of the C. quitensis genome. C. quitensis in the study region has a low level of genetic variability in intron length polymorphism of actin, α- and γ-tubulin genes. Overall, the results indicate that DNA markers based on gene structure analysis of highly conserved cytoskeletal pro-teins, namely, actin, α- and γ-tubulin, as additional sources of information, can be used for molecular genetic analysis of C. quitensis populations in the Antarctic

    Neutron Scattering and Its Application to Strongly Correlated Systems

    Full text link
    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an introduction to neutrons and neutron sources. The neutron scattering cross section is described and formulas are given for nuclear diffraction, phonon scattering, magnetic diffraction, and magnon scattering. As an experimental example, we describe measurements of antiferromagnetic order, spin dynamics, and their evolution in the La(2-x)Ba(x)CuO(4) family of high-temperature superconductors.Comment: 31 pages, chapter for "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancin

    Comparative Analysis of Human Protein-Coding and Noncoding RNAs between Brain and 10 Mixed Cell Lines by RNA-Seq

    Get PDF
    In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Session 17 Ecophysiology

    Get PDF
    n/
    corecore