93 research outputs found

    Complex dynamics of elementary cellular automata emerging from chaotic rules

    Get PDF
    We show techniques of analyzing complex dynamics of cellular automata (CA) with chaotic behaviour. CA are well known computational substrates for studying emergent collective behaviour, complexity, randomness and interaction between order and chaotic systems. A number of attempts have been made to classify CA functions on their space-time dynamics and to predict behaviour of any given function. Examples include mechanical computation, \lambda{} and Z-parameters, mean field theory, differential equations and number conserving features. We aim to classify CA based on their behaviour when they act in a historical mode, i.e. as CA with memory. We demonstrate that cell-state transition rules enriched with memory quickly transform a chaotic system converging to a complex global behaviour from almost any initial condition. Thus just in few steps we can select chaotic rules without exhaustive computational experiments or recurring to additional parameters. We provide analysis of well-known chaotic functions in one-dimensional CA, and decompose dynamics of the automata using majority memory exploring glider dynamics and reactions

    A High-Resolution Spectrum of the Extremely Metal-Rich Bulge G-Dwarf OGLE-2006-BLG-265

    Get PDF
    We present an R=45,000 Keck spectrum of the microlensed Galactic bulge G-dwarf OGLE-2006-BLG-265, which has a high (~60) signal-to-noise ratio despite its short (15 min) exposure time because the source was magnified by A~135. While it is very metal-rich ([Fe/H]=0.56), the higher temperature of this star compared with the luminous red giants usually measured in the bulge gives its spectrum many unblended atomic lines. We measure the abundances of 17 elements, including the first abundances for S and Cu in a bulge star. The [alpha/Fe] ratios are subsolar, while the odd-Z elements are slightly supersolar, trends that are also seen in the more metal-rich stars in the bulge and the local Galactic disk. Because the star is a dwarf, the [O/Fe], [Na/Fe], and [Al/Fe] ratios cannot be attributed to internal mixing, as is sometimes claimed for giants. Similar high-resolution spectra could be obtained for about a dozen bulge dwarf stars per year by means of well-designed target-of-opportunity observations.Comment: 5 pages, 2 figures, submitted to ApJ Letter

    A Central Excess of Stripped-Envelope Supernovae within Disturbed Galaxies

    Full text link
    This paper presents an analysis of core-collapse supernova distributions in isolated and interacting host galaxies, paying close attention to the selection effects involved in conducting host galaxy supernova studies. When taking into account all of the selection effects within our host galaxy sample, we draw the following conclusions: i) Within interacting, or 'disturbed', systems there is a real, and statistically significant, increase in the fraction of stripped-envelope supernovae in the central regions. A discussion into what may cause this increased fraction, compared to the more common type IIP supernovae, and type II supernovae without sub-classifications, is presented. Selection effects are shown not to drive this result, and so we propose that this study provides direct evidence for a high-mass weighted initial mass function within the central regions of disturbed galaxies. ii) Within 'undisturbed' spiral galaxies the radial distribution of type Ib and type Ic supernovae is statistically very different, with the latter showing a more centrally concentrated distribution. This could be driven by metallicity gradients in these undisturbed galaxies, or radial variations in other properties (binarity or stellar rotation) driving envelope loss in progenitor stars. This result is not found in 'disturbed' systems, where the distributions of type Ib and Ic supernovae are consistent.Comment: Accepted for publication in MNRA

    Strong selection on male plumage in a hybrid zone between a hybrid bird species and one of its parents

    Get PDF
    Homoploid hybrid speciation (HHS) requires reproductive barriers between hybrid and parent species, despite incomplete reproductive isolation (RI) between the parents. Novel secondary sexual trait values in hybrids may cause prezygotic isolation from both parents, whereas signals inherited by the hybrid from one parent species may cause prezygotic isolation with the other. Here we investigate whether differences in male plumage function as a premating barrier between the hybrid Italian sparrow and one of its parent species, the house sparrow, in a narrow Alpine hybrid zone. Italian sparrow male plumage is a composite mosaic of the parental traits, with its head plumage most similar to its other parent, the Spanish sparrow. We use geographical cline analysis to examine selection on three plumage traits, 75 nuclear single nucleotide polymorphisms (SNPs) and hybrid indices based on these SNPs. Several SNPs showed evidence of restricted introgression in the Alps, supporting earlier findings. Crown colour exhibited the narrowest plumage cline, representing a 37% (range 4–65%) drop in fitness. The cline was too narrow to be due to neutral introgression. Only crown colour was significantly bimodal in the hybrid zone. Bimodality may be due to RI or a major QTL, although fitness estimates suggest that selection contributes to the pattern. We discuss the implications with respect to HHS and the species status of the Italian sparrow

    From the selfish gene to selfish metabolism: revisiting the central dogma

    Get PDF
    The standard representation of the Central Dogma (CD) of Molecular Biology conspicuously ignores metabolism. However, both the metabolites and the biochemical fluxes behind any biological phenomenon are encrypted in the DNA sequence. Metabolism constrains and even changes the information flow when the DNA-encoded instructions conflict with the homeostasis of the biochemical network. Inspection of adaptive virulence programs and emergence of xenobiotic-biodegradation pathways in environmental bacteria suggest that their main evolutionary drive is the expansion of their metabolic networks towards new chemical landscapes rather than perpetuation and spreading of their DNA sequences. Faulty enzymatic reactions on suboptimal substrates produce reactive oxygen species (ROS), which fosters DNA diversification and eventually couples catabolism of the new chemicals to growth. All this calls for a revision of the CD in which metabolism (rather than DNA) has the leading role.The work in Author’s laboratory is supported by generous grants of the Spanish Ministry of Science and Innovation (CONSOLIDER), by contracts of the Framework Program of the EU (MICROME, ST-FLOW), the European Research Council (ARISYS) and by Funds of the Autonomous Community of Madrid (PROMT Program).Peer reviewe

    Tensin3 Is a Negative Regulator of Cell Migration and All Four Tensin Family Members Are Downregulated in Human Kidney Cancer

    Get PDF
    BACKGROUND: The Tensin family of intracellular proteins (Tensin1, -2, -3 and -4) are thought to act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. Dysregulation of Tensin expression has previously been implicated in human cancer. Here, we have for the first time evaluated the significance of all four Tensins in a study of human renal cell carcinoma (RCC), as well as probed the biological function of Tensin3. PRINCIPAL FINDINGS: Expression of Tensin2 and Tensin3 at mRNA and protein levels was largely absent in a panel of diverse human cancer cell lines. Quantitative RT-PCR analysis revealed mRNA expression of all four Tensin genes to be significantly downregulated in human kidney tumors (50-100% reduction versus normal kidney cortex; P<0.001). Furthermore, the mRNA expressions of Tensins mostly correlated positively with each other and negatively with tumor grade, but not tumor size. Immunohistochemical analysis revealed Tensin3 to be present in the cytoplasm of tubular epithelium in normal human kidney sections, whilst expression was weaker or absent in 41% of kidney tumors. A subset of tumor sections showed a preferential plasma membrane expression of Tensin3, which in clear cell RCC patients was correlated with longer survival. Stable expression of Tensin3 in HEK 293 cells markedly inhibited both cell migration and matrix invasion, a function independent of putative phosphatase activity in Tensin3. Conversely, siRNA knockdown of endogenous Tensin3 in human cancer cells significantly increased their migration. CONCLUSIONS: Our findings indicate that the Tensins may represent a novel group of metastasis suppressors in the kidney, the loss of which leads to greater tumor cell motility and consequent metastasis. Moreover, tumorigenesis in the human kidney may be facilitated by a general downregulation of Tensins. Therefore, anti-metastatic therapies may benefit from restoring or preserving Tensin expression in primary tumors

    Network Properties of Robust Immunity in Plants

    Get PDF
    Two modes of plant immunity against biotrophic pathogens, Effector Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), are triggered by recognition of pathogen effectors and Microbe-Associated Molecular Patterns (MAMPs), respectively. Although the jasmonic acid (JA)/ethylene (ET) and salicylic acid (SA) signaling sectors are generally antagonistic and important for immunity against necrotrophic and biotrophic pathogens, respectively, their precise roles and interactions in ETI and PTI have not been clear. We constructed an Arabidopsis dde2/ein2/pad4/sid2-quadruple mutant. DDE2, EIN2, and SID2 are essential components of the JA, ET, and SA sectors, respectively. The pad4 mutation affects the SA sector and a poorly characterized sector. Although the ETI triggered by the bacterial effector AvrRpt2 (AvrRpt2-ETI) and the PTI triggered by the bacterial MAMP flg22 (flg22-PTI) were largely intact in plants with mutations in any one of these genes, they were mostly abolished in the quadruple mutant. For the purposes of this study, AvrRpt2-ETI and flg22-PTI were measured as relative growth of Pseudomonas syringae bacteria within leaves. Immunity to the necrotrophic fungal pathogen Alternaria brassicicola was also severely compromised in the quadruple mutant. Quantitative measurements of the immunity levels in all combinatorial mutants and wild type allowed us to estimate the effects of the wild-type genes and their interactions on the immunity by fitting a mixed general linear model. This signaling allocation analysis showed that, contrary to current ideas, each of the JA, ET, and SA signaling sectors can positively contribute to immunity against both biotrophic and necrotrophic pathogens. The analysis also revealed that while flg22-PTI and AvrRpt2-ETI use a highly overlapping signaling network, the way they use the common network is very different: synergistic relationships among the signaling sectors are evident in PTI, which may amplify the signal; compensatory relationships among the sectors dominate in ETI, explaining the robustness of ETI against genetic and pathogenic perturbations

    Molecular marks for epigenetic identification of developmental and cancer stem cells

    Get PDF
    Epigenetic regulations of genes by reversible methylation of DNA (at the carbon-5 of cytosine) and numerous reversible modifications of histones play important roles in normal physiology and development, and epigenetic deregulations are associated with developmental disorders and various disease states, including cancer. Stem cells have the capacity to self-renew indefinitely. Similar to stem cells, some malignant cells have the capacity to divide indefinitely and are referred to as cancer stem cells. In recent times, direct correlation between epigenetic modifications and reprogramming of stem cell and cancer stem cell is emerging. Major discoveries were made with investigations on reprogramming gene products, also known as master regulators of totipotency and inducer of pluoripotency, namely, OCT4, NANOG, cMYC, SOX2, Klf4, and LIN28. The challenge to induce pluripotency is the insertion of four reprogramming genes (Oct4, Sox2, Klf4, and c-Myc) into the genome. There are always risks of silencing of these genes by epigenetic modifications in the host cells, particularly, when introduced through retroviral techniques. In this contribution, we will discuss some of the major discoveries on epigenetic modifications within the chromatin of various genes associated with cancer progression and cancer stem cells in comparison to normal development of stem cell. These modifications may be considered as molecular signatures for predicting disorders of development and for identifying disease states
    corecore