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Abstract

Metabolic versatility has been increasingly recognized as a major virulence mechanism that enables Mycobacterium
tuberculosis to persist in many microenvironments encountered in its host. Glucose is one of the most abundant carbon
sources that is exploited by many pathogenic bacteria in the human host. M. tuberculosis has an intact glycolytic pathway
that is highly conserved in all clinical isolates sequenced to date suggesting that glucose may represent a non-negligible
source of carbon and energy for this pathogen in vivo. Fructose-6-phosphate phosphorylation represents the key-
committing step in glycolysis and is catalyzed by a phosphofructokinase (PFK) activity. Two genes, pfkA and pfkB have been
annotated to encode putative PFK in M. tuberculosis. Here, we show that PFKA is the sole PFK enzyme in M. tuberculosis with
no functional redundancy with PFKB. PFKA is required for growth on glucose as sole carbon source. In co-metabolism
experiments, we report that disruption of the glycolytic pathway at the PFK step results in intracellular accumulation of
sugar-phosphates that correlated with significant impairment of the cell viability. Concomitantly, we found that the
presence of glucose is highly toxic for the long-term survival of hypoxic non-replicating mycobacteria, suggesting that
accumulation of glucose-derived toxic metabolites does occur in the absence of sustained aerobic respiration. The culture
medium traditionally used to study the physiology of hypoxic mycobacteria is supplemented with glucose. In this medium,
M. tuberculosis can survive for only 7–10 days in a true non-replicating state before death is observed. By omitting glucose in
the medium this period could be extended for up to at least 40 days without significant viability loss. Therefore, our study
suggests that glycolysis leads to accumulation of glucose-derived toxic metabolites that limits long-term survival of hypoxic
mycobacteria. Such toxic effect is exacerbated when the glycolytic pathway is disrupted at the PKF step.
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Introduction

Despite the availability of effective anti-tubercular drugs,

tuberculosis (TB) remains a scourge of public health with 8.8

million people infected with active TB in 2010 [1]. The metabolic

versatility of M. tuberculosis, the etiological agent of TB, represents

one of the key virulence strategies developed by the pathogen to

persist in many microenvironments within its host [2]. Earlier

studies on carbon metabolism have shown that M. tuberculosis can

utilize a variety of carbon substrates [3].

During infection, several studies have shown that the gluconeo-

genic pathway is required for infection and persistence, suggesting

that fatty acids constitute one of the main carbon and energy

source utilized by M. tuberculosis [4–7]. In addition, the sequencing

of M. tuberculosis genome revealed that fatty acid b-oxidation genes

are extensively duplicated [8] and are up-regulated during

infection in macrophages [9] and in mice [10]. Beside fatty acids,

host cholesterol is another possible carbon source used by M.

tuberculosis during infection [11,12].

However, M. tuberculosis displays a unique versatility for carbon

metabolism that we are only starting to appreciate and under-

stand. A recent study has shown that M. tuberculosis is not subjected

to catabolic repression and is therefore capable of co-catabolizing

several carbon sources simultaneously for optimal growth [13]. In
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particular, the simultaneous catabolism of glucose and lipids was

found to potentiate bacterial growth, at least in vitro [13].

Therefore, even though b-oxidation is required for virulence, it

is conceivable that other carbon and energy sources may be

utilized by M. tuberculosis for optimal infection and persistence in

the various microenvironments within its host. Glucose represents

one of the most abundant sources of carbon and energy, and it is

thus not surprising that the glycolytic pathway is highly conserved

in almost all living organisms. Indication that glucose metabolism

might be important for M. tuberculosis during infection arises from a

study where putative carbohydrate transporters and a hexose

kinase were found essential for infection in mice [10]. Studies in

Salmonella enterica serovar Typhimurium, an intracellular pathogen,

have also shown that glycolysis is required for infection [14,15].

The M. tuberculosis genome reveals an intact glycolytic and

pentose phosphate pathway but no Entner-Doudoroff pathway

[8]. Early in vitro studies suggested that glucose is predominantly

oxidized through glycolysis while a small fraction enters the

pentose phosphate pathway [16]. The key-committing step of

glycolysis is catalyzed by a phosphofructokinase (PFK) activity,

which irreversibly catalyzes the phosphorylation of fructose-6-

phosphate to fructose-1,6-bisphosphate (Fig. 1). Two putative

PFKs (PFKA and PFKB) encoding genes have been annotated in

M. tuberculosis genome, namely Rv3010c and Rv2029c, respectively.

Although both enzymes are proposed to catalyze the same

enzymatic reaction, they belong to different subfamilies; PFKA

belongs to the PFK protein family whereas PFKB belongs to the

pfkB subfamily of ribokinase superfamily. Furthermore, not only

their amino acid sequence greatly differs, but their gene

expressions are different whereby pfkB, is a member of the DOS

regulon and is up-regulated during hypoxia [17,18] and in

activated macrophages [9]. TraSH-based mutagenesis screen

indicated that both pfkA and pfkB are not essential for the survival

of M. tuberculosis in vitro and in vivo growth [10,19].

In this work, we investigated the role of PFKA and PFKB in M.

tuberculosis glucose metabolism. We demonstrated that pfkA encodes

a functional PFK that is essential for growth on glucose as sole

carbon source, and is responsible for the total PFK activity in M.

tuberculosis. No functional redundancy between pfkA and pfkB could

be established. Our data indicate that a functional glycolytic

pathway is required to limit the intracellular accumulation of

glucose-derived toxic metabolic intermediates during co-metabo-

lism. We also report a strong detrimental effect of glucose

metabolism for the long-term survival of hypoxic non-replicating

mycobacteria.

Materials and Methods

Ethics statement
All the animal experiments were approved by and carried out

under the guidelines of the Institutional Animal Care and Use

Committee (IACUC) of Novartis Institute for Tropical Diseases,

Singapore. Non-terminal procedures were performed under

anesthesia, and all efforts were made to minimize suffering.

Mycobacterial strains and growth conditions
M. tuberculosis H37Rv and derivative mutant strains were grown

in Middlebrook 7H9 liquid medium supplemented with 0.2%

glycerol, 0.5% bovine serum albumin fraction V, 0.2% glucose,

0.085% sodium chloride and 0.05% Tween-80 or on Middlebrook

7H11 agar supplemented with 10% oleic acid-dextrose-albumin-

catalase enrichment and 0.5% glycerol. When required, culture

media were supplemented with hygromycin at final concentration

of 80 mg/ml or with kanamycin at a final concentration of 25 mg/

ml.

For growth kinetics studies in defined culture broth media,

mycobacteria were first cultured in 7H9 medium until mid-log

phase, washed once with defined culture broth medium (no carbon

source) and then inoculated at an initial optical density at 600 nm

(OD600) of 0.05. The defined culture broth media contained 2.5 g

Na2HPO4, 1 g KH2PO4, 0.424 g glutamic acid, 1 mg pyridoxine,

0.5 mg biotin, 15 mg ferric ammonium citrate, 40 g MgSO4,

0.5 mg CaCl2, 0.6 mg ZnSO4, 0.6 mg CuSO4, 0.8 g NaCl, 0.5 g

Tyloxapol and 0.1% fatty-acid free bovine serum albumin (Sigma

A8806) per litre of medium. Glucose, acetate or glycerol was

added at a final concentration of 0.2% as carbon source. Bacterial

growth was monitored by measuring the optical density at 600 nm

over time.

For growth kinetics studies in Dubos medium, mycobacteria

were first culture in Dubos liquid medium (Difco) supplemented

with 0.5% BSA fraction V, 0.085% NaCl and 0.03% Tween-80

until mid-log phase. The cells were inoculated at an initial OD600

of 0.05 in either Dubos liquid medium described previously or in

complete Dubos liquid medium (further supplemented with 0.75%

glucose). Bacterial growth was monitored at OD600 over time.

Construction of M. tuberculosis knockout and
complemented strains

The knockout mutants were obtained by double homologous

recombination using plasmid pYUB854 as described before [20].

Briefly, fragments of ,1 kb flanking pfkA or pfkB opening reading

Figure 1. Schematic representation of the glycolytic pathway.
Key committing step of glycolysis is catalyzed by pfkA/pfkB.
doi:10.1371/journal.pone.0056037.g001
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frames (ORFs) were PCR amplified from H37Rv genomic DNA

using primer pairs: PFKA5F-PFKA5R, PFKA3F-PFKA3R,

PFKB5F-PFKB5R and PFKB3F-PFKB3R (Table 1). The 59

and 39 flanking fragments were then cloned into pYUB854

flanking the hygromycin-resistance gene. The sacB-lacZ cassette

excised from pGOAL17 [21] was finally cloned into the unique

PacI site of pYUB854. The final plasmids were UV-irradiated

prior to electroporation into H37Rv strain. Positive clones of

knockout mutants were selected as white colonies on 7H11 agar

supplemented with hygromycin and X-Gal. Deletion of the target

gene was verified by PCR (primers sequence in Table 1) and

confirmed by Southern blot. Unmarked knockout mutant of pfkA

was obtained upon removal of the hygromycin cassette using the

resolvase gene-containing plasmid pWM19 as described previously

[22]. Colonies were first selected on 7H11 agar containing

gentamycin at 31uC and followed by selection on 7H11 agar

supplemented with 2% sucrose at 39uC.

For complementation of DpfkA mutant, the pfkA ORF and its

putative promoter region were PCR amplified with primers

PFKAcF and PFKAcR (Table 1) from H37Rv genomic DNA and

cloned into the promoterless integrative vector pMV306 [23]. For

complementation of DpfkB mutant, the pfkB ORF was PCR

amplified with primers PFKBcF and PFKBcR (Table 1) and

cloned into replicative vector pMV262 under the constitutive

hsp60 promoter [23]. The XbaI-HindIII fragment from recombi-

nant pMV262- hsp60pfkB plasmid was then cloned into pMV306,

giving pMV306-hsp60pfkB. All the complemented strains were

verified by PCR.

Southern blot analysis of knockout mutants
Genomic DNA of the parental and mutant strains were digested

with restriction enzyme BamHI for confirmation of pfkA deletion

and EcoRI for confirmation of pfkB deletion. Digested DNA was

separated on a 0.8% agarose gel, transferred onto nylon

membrane and probed for modification of the loci. Southern blot

analysis was performed using DIG Nonradioactive Nucleic Acid

Labelling and Detection System (Roche), following the manufac-

turer’s instruction. DIG-labelled probeA and probeB (Fig. 2) were

PCR-amplified using primer pairs of PFKAusF-PFKAsR and

Table 1. Primers used in this study.

Primer Sequence (59-39) Purpose

PFKA5F CGACTAGTCGCGCTGACCGCGACCGTCG pfkA knockout

PFKA5R TACCATGGGTACGCACCACCGCACGGATG pfkA knockout

PFKA3F GTTCTAGAAGATGGTGACGTTGCGCGGC pfkA knockout

PFKA3R CACTTAAGGTGTAACCGGCCTCGTGAAAG pfkA knockout

PFKB5F CGACTAGTCACGCAACCAGCGCTACGA pfkB knockout

PFKB5R TGCCATGGCAGTGATGTCGAGCAACCG pfkB knockout

PFKB3F GCTCTAGACGCGACGATGTGGAGAGGT pfkB knockout

PFKB3R CGCTTAAGCGCAACCGAAGCTGCGACA pfkB knockout

PFKAcF TATCTAGACCGCTACTGAGCGCCATTTA pfkA ORF

PFKAcR TAAAGCTTACCCGACGTCAACCGAAGAA pfkA ORF

PFKBcF TAAGATCTATGACGGAGCCAGCGGCGTG pfkB ORF

PFKBcR GCAAGCTTGTGTGATTGGTTCATGGCGA pfkB ORF

PFKA-pET29F TACATATGCGGATTGGAGTTCTTACCG Cloning into pET29a

PFKA-pET29R TACTCGAGACCGAAGAAGGCGGCGGC Cloning into pET29a

PFKB-pET15F TACATATGACGGAGCCAGCGGCGTG Cloning into pET15b

PFKB-pET15R TACTCGAGGTGTGATTGGTTCATGGCGAGG Cloning into pET15b

PFKA-pQE60F TACCATGGGTATGCGGATTGGAGTTCTTAC Cloning into pQE60

PFKA-pQE60R TAAGATCTACCGAAGAAGGCGGCGGC Cloning into pQE60

PFKAInF GGTCGGATTTCAGAACGGCTT Verification of pfkA deletion

PFKAInR CATGCCTACCCATCACCTCCA Verification of pfkA deletion

PFKBInF GAGCAATGCCTCGACGAACTG Verification of pfkB deletion

PFKBInR CTGCCGCGTTTCCCAAGCGA Verification of pfkB deletion

PFKAusF CGGCGTAAACCCACCTACG Verification of pfkA deletion

PFKAdsR GCGCGACAGGCTCCAAATCC Verification of pfkA deletion

PFKBusF CGCAACACCGTGGTCCGAGA Verification of pfkB deletion

PFKBdsR CTTCGACGATCTGTTCAATCC Verification of pfkB deletion

HygF CTTCACCGATCCGGAGGAACT Verification of gene deletion

HygR GACGACCTGCAGGCATGCAA Verification of gene deletion

PFKAsR ATTGCTCGACACCTCCGAGGG Southern blot probe

PFKBsR TTCCACGAGGTAACGCGTCC Southern blot probe

Restriction sites are underlined.
doi:10.1371/journal.pone.0056037.t001
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PFKBusF-PFKBsR (Table 1) respectively. Bands were visualized

using chemiluminescent detection.

Complementation of an E.coli PFK knockout mutant
Mycobacterial pfkA and pfkB ORFs were PCR amplified using

primer pairs PFKApQE60F-PFKApQE60R and PFKBcF-

PFKBcR respectively (Table 1). pfkA was cloned into expression

vector pQE-60 and and pfkB was cloned into pQE-30 (Qiagen).

These vectors allow an IPTG-inducible T5 promoter-driven

expression in E. coli. The recombinant plasmids were electropo-

rated into DpfkADpfkB E. coli mutant RL257 (CGSC, Yale) [24].

The transformed RL257 strains and control RL257 strain were

grown in Luria Bertani (Miller) broth medium (Difco) until mid-

log phase and washed once with M9 solution (Difco). OD600 was

then adjusted to 0.01 before streaking onto minimal medium agar

containing M9 minimal salts (Difco) supplemented with 2 mM

MgSO4 and 0.2% glucose or glycerol as carbon source. Expression

of mycobacterial pfkA and pfkB genes was induced by 0.01 mM

IPTG in the agar plates. Bacteria were incubated at 37uC
overnight.

Cloning, expression and purification of PFKA and PFKB
The pfkA and pfkB ORFs were PCR amplified from H37Rv

genomic DNA with primer pairs PFKApET29F-PFKApET29R

and PFKBpET15F-PFKBpET15R respectively (Table 1). pfkA was

cloned into expression vectors pET-29a(+) and pfkB was cloned

into pET15b (Novagen). pfkA was expressed as C-terminal 6xHis-

tag recombinant protein while pfkB was expressed as N-terminal

6xHis-tag recombinant protein in E. coli BL21(DE3) (Stratagene).

Bacteria cultures were grown at 37uC in LB broth until mid-log

phase and then transferred to 16uC. Induction of recombinant

protein expression started with the addition of 0.1 mM IPTG and

bacteria were cultured at 16uC for 20 hrs. Bacterial cells were

harvested and disrupted by sonication. Cell debris were removed

by centrifugation and the His-tagged proteins were purified under

native conditions on Ni-NTA agarose column (Qiagen) followed

by size exclusion chromatography on Superdex 200 10/300 GL

column (GE Healthcare). The proteins were stored at 280uC in

buffer containing 50 mM Tris-HCl pH7.5 and 5 mM MgCl2.

Preparation of cell-free crude extracts for enzyme and
metabolite assays

Cell-free crude extracts of M. tuberculosis strains were prepared

by harvesting mid-log phase culture grown in 7H9 medium. For

metabolites measurement, bacterial strains were culture in

complete Dubos liquid medium or Dubos liquid medium without

glucose. Mycobacterial cells were washed twice with PBS/0.05%

Tween-80 and resuspended in lysis buffer [50 mM Tris-HCl

pH 7.5, 5 mM MgCl2, 1 mM dithiothreitol and complete

protease inhibitor (Roche)]. Mycobacterial cells were disrupted

mechanically by 0.1 mm glass beads in FastPrep FP220A bead-

beater (Qbiogen). Lysates were clarified by centrifugation and then

filtered through 0.22 mm filter. Total protein concentration was

measured with BCA protein assay reagent kit (Pierce). Cell-free

crude extracts to be used for metabolite assays were boiled for

10 min and centrifuged at 13,000 rpm for 10 min at 4uC.

Phosphofructokinase activity assay
Phosphofructokinase activity was measured in an enzyme-

coupled assay in which fructose-1,6-bisphophate formation is

coupled to the oxidation of NADH [25]. The standard assay

mixture (0.1 ml) contained 5 mM fructose-6-phosphate, 1 mM

ATP, 0.3 mM NADH (Roche), 1 unit each of aldolase, triosepho-

sphate isomerase and glycerol-3-phosphate dehydrogenase in

50 mM Tris-HCl pH7.5 and 5 mM MgCl2. For enzymatic assay

with purified recombinant proteins, 1 mM fructose-6-phosphate

and 0.1 mM ATP were used instead. The enzyme activities were

measured by monitoring the decrease in absorbance at 340 nm

using a SpectraMax spectophotometer (Molecular Devices) at

room temperature. Quantification was done with a NADH

Figure 2. Deletion of pfkA and pfkB genes in M. tuberculosis. Schematic representation of the genomic regions of (A) pfkA in WT and DpfkA
mutant, (C) pfkB in WT and DpfkB mutant, and location of restriction sites and probes. (B) and (D) are Southern blots confirming the knockout of pfkA
and pfkB genes respectively. res: sites of resolvase; hyg: hygromycin resistance cassette.
doi:10.1371/journal.pone.0056037.g002
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standard curve. All enzymes and reagents used in enzyme-coupled

assay were purchased from Sigma-Aldrich, unless otherwise stated.

Immunoblotting
Samples of cell-free crude extract were separated on a NuPAGE

4–12% polyacrylamide get (Invitrogen) and transferred to PVDF

membrane. PFKB was detected with rabbit polyclonal anti-PFKB

antibody, raised against the recombinant PFKB, and visualized

with SuperSignal West Pico Chemiluminescent Substrate kit

(Pierce). Ponseus-S (Sigma-Aldrich) staining of the membrane was

done to check for equal loading of the cell lysates.

Measurement of intracellular metabolites
Intracellular metabolites concentration were enzymatically

determined as described by Hasan et al [26] with slight

modifications. Glucose-6-phosphate concentration was deter-

mined by measuring the increase in absorbance at 340 nm in an

enzymatic assay reaction (0.2 ml) containing 0.3 mM NADP+

(Roche), 0.1 unit of glucose-6-phosphate dehydrogenase in

50 mM Tris-HCl pH7.5 and 5 mM MgCl2. To determine the

concentration of fructose-6-phosphate, 0.1 unit of phosphoglucose

isomerase was added to the reaction mixture after glucose-6-

phosphate reaction was completed and the change in absorbance

at 340 nm was recorded. Quantification was done with a NADPH

standard curve. All enzymes and reagents used in metabolites

measurement were purchased from Sigma-Aldrich, unless other-

wise stated.

Mouse infection
Animals were housed in specific pathogen-free conditions in

individual ventilated cages in an ABSL3 facility. Female BALB/c

mice of 6–8 weeks old were nasally infected with 103 CFU of

H37Rv parental and DpfkA strains. Four animals per group were

sacrificed at the indicated time points. The lungs and spleen were

aseptically harvested and homogenized in PBS/0.05% Triton X-

100. The bacterial load were quantified by plating serial dilutions

of the organ homogenates on 7H11 agar supplemented with

cycloheximide and ampicillin each at 10 mM. The number of

CFU was recorded after 16 days incubation at 37uC.

Wayne model of hypoxia
M. tuberculosis H37Rv and mutant strains were subjected to slow

withdrawal of oxygen as described before [27]. Mycobacteria were

first cultured in Dubos liquid medium (without glucose). The cells

were then diluted in either Dubos liquid medium (without glucose)

or complete Dubos liquid medium to a final OD600 of 0.002.

17 ml of the diluted culture was aliquoted into screw-cap test tubes

(20 mm by 125 mm) to maintain a head-to-space ration of 0.5 and

the test tubes were tightly capped. The cultures were then stirred

gently at 170 rpm on magnetic stirring platform at 37uC.

Methlylene blue (1.5 mg/ml) was added to two representative

tubes to monitor oxygen depletion. Growth and survival of

mycobacteria were determined by enumeration of CFU after 2 to

3 weeks of incubation at 37uC on 7H11 agar plated out at various

time-points..

Results

PfkA is responsible for the total PFK activity in M.
tuberculosis

Two genes pfkA (Rv3010c) and pfkB (Rv2029c) have been

annotated to encode a PFK in M. tuberculosis. To investigate the

relative contribution of each gene product to the overall M.

tuberculosis PFK activity, M. tuberculosis mutants deleted for either

pfkA or pfkB were constructed by homologous recombination in M.

tuberculosis H37Rv. Since pfkA is part of an operon, an unmarked

pfkA KO mutant was constructed to avoid any polar effect on

downstream open reading frame (ORF) gatB (Fig. 2). Deletion at

the correct genetic locus was confirmed by Southern blot (Fig. 2).

Complementation was then performed whereby an intact copy of

the pfkA ORF and its promoter region was re-introduced into the

DpfkA bacterial chromosome using the promoterless integrative

plasmid pMV306. A PFK enzymatic assay was developed using

cell-free extracts from the parental (WT), KO and complemented

strains. Results showed that PFK activity could not be detected

over background level in the DpfkA mutant (Table 2). The PFK

activity in DpfkB mutant was comparable to that measured in the

WT strain, suggesting that pfkB does not encode for a functional

PFK. The PFK activity could be restored to parental level in the

DpfkA mutant upon complementation with a wild-type copy of pfkA

(Table 2). These data thus suggested that pfkA is responsible for the

total PFK activity in M. tuberculosis, at least under aerobic

conditions.

Since pfkB was previously reported to be upregulated under

hypoxic condition and in activated macrophages [9], we

hypothesized that PFKB may contribute to M. tuberculosis PFK

activity under hypoxia but not during aerobic growth. To test

whether pfkB encodes for a functional PFK, the pfkB ORF was

cloned in a replicative plasmid (pMV262) under the control of the

constitutive hsp60 promoter, and expressed in the DpfkA mutant.

PFKB over-expression in the DpfkA mutant was confirmed by

Western blot (Fig. 3), but did not lead to detectable PFK activity

levels in the cell free extracts, further supporting that PFKB does

not contribute to the mycobacterial PFK activity (Table 2).

Consistently, when M. tuberculosis PFKA and PFKB were expressed

in a pfkA/pfkB double KO strain of E. coli (RL257) [24], only

mycobacterial pfkA but not pfkB allowed the growth of E. coli

RL257 on minimal medium with glucose as the sole carbon source

(Fig. 4), strongly suggesting that pfkB does not encode for a PFK

enzyme.

Finally, His-tagged PFKA and PFKB proteins were over-

expressed in E. coli, purified and tested in enzyme-coupled assay

for their PFK activity. PFKA was able to catalyze the phosphor-

ylation of fructose-6-phosphate to fructose-1,6-bisphosphate effi-

ciently, whereas no significant activity was detected from PFKB

(Table 2).

Taken together, these data strongly support that pfkA is

responsible for the overall PFK activity in M. tuberculosis H37Rv,

and that pfkB does not catalyze fructose-6-phosphate in vivo.

pfkA is necessary and sufficient for M. tuberculosis growth
on glucose as sole carbon source

To further study the role of pfkA and pfkB in mycobacterial

glucose metabolism, we tested the ability of both the DpfkA and

DpfkB mutants to grow in the presence of glucose as sole carbon

source. The results showed that DpfkA mutant was unable to grow

efficiently on glucose as sole carbon source whereas it displayed a

parental growth kinetic on acetate or glycerol (Fig. 5A–C). The

growth defect on glucose observed with mpfkA mutant was restored

upon complementation with a wild-type copy of pfkA (Fig. 5A).

Consistent with the PFK activity data (Table 2), the growth defect

of DpfkA mutant could not be reversed upon constitutive

expression of pfkB (Fig. 5A). In contrast, DpfkB mutant showed

no growth defect on glucose (Fig. 5D) which is in agreement with

the PFK activity measured in this mutant strain (Table 2). These

data thus further support that PFKA is indispensable for the

PFKA Is a Phosphofructokinase in M. tuberculosis
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glycolytic pathway in M. tuberculosis during aerobic growth with no

functional redundancy with PFKB.

PFKA is not required for virulence and survival in the
mouse model of tuberculosis infection

Genes encoding putative disaccharide transporters were pre-

dicted to be required for the first week of mouse infection [10].

Studies in Salmonella enterica serovar Typhimurium have shown that

PFK is important during mouse infection [14,15]. To study the

role of PFKA in M. tuberculosis virulence, BALB/c mice were

nasally infected with the parental or DpfkA strains, and their

infection profiles in the lung and spleen were monitored. The

results indicated that the bacterial loads in both organs recovered

from both mouse groups were comparable (Fig. 6). This result thus

suggested that PFKA, and therefore glycolysis, is not crucial for M.

tuberculosis survival and persistence in the mouse lungs and spleen.

This result does not rule out the possibility that PFKA may be

required for survival in other animal models where pathology and

physiology of the bacterium are closer to those observed during

human infection.

PFKA is required for survival of hypoxic non-replicating
M. tuberculosis

During the course of in vitro aerobic growth we noticed that

DpfkA mutant displayed impaired fitness upon reaching stationary

phase in Dubos medium with no visible signs of clumping (Fig. 7A).

Dubos medium contains large amount of glucose, amino acids and

lipids as main sources of carbon and energy. When glucose was

depleted from the Dubos medium, DpfkA mutant survived as well

as the parental strain during the stationary phase (Fig. 7B). We

thus hypothesized that accumulation of toxic glucose-derived

sugar-phosphates such as glucose-6-phospate and fructose-6-

phosphate in the DpfkA mutant may account for the growth defect

observed during co-metabolism when oxygen tension becomes

limiting. Sugar-phosphates have indeed been shown to be highly

toxic in many bacteria, including M. tuberculosis [28]. Consistently,

the pool of glucose-6-phospate and fructose-6-phosphate measured

during the exponential growth of the DpfkA mutant was 50%

higher compared to the parental strain (Table 3). It is interesting to

note that while accumulation of sugar-phosphates occurs during

the growth exponential phase, the toxic phenotype instead was

only observed during the stationary phase, linking the detrimental

effect of sugar-phosphate accumulation with oxygen depletion.

This observation prompted us to extend our study to the

survival of DpfkA mutant under anaerobic conditions using the

well-established in vitro Wayne model of hypoxia in which gradual

depletion of oxygen triggers the bacterium to enter a non-

replicating state [27]. In this model, Dubos medium supplemented

with glucose is classically employed by the vast majority of

research groups to study the physiology of hypoxic non-replicating

mycobacteria [27]. The DpfkA mutant multiplied efficiently before

oxygen depletion. However after day 6, which coincided with

decolourization of the oxygen probe methylene blue, DpfkA

bacteria displayed a significant viability loss compared to the

parental and complemented strains (Fig. 7C). To test whether the

attenuated phenotype was linked to the accumulation of toxic

glucose-derived metabolites, the same experiment was performed

in culture medium in which addition of glucose was omitted. In

these culture conditions DpfkA mutant survived as well as the

parental strain, demonstrating that in the presence of exogenous

glucose, absence of PFK activity leads to the accumulation of toxic

metabolic intermediates in hypoxic non-replicating mycobacteria

(Fig. 7D).

Glucose is detrimental for long term M. tuberculosis
survival in the Wayne model

The toxic effect of glucose observed in the Wayne model when

the glycolytic pathway is disrupted prompted us to take a closer

look at the limited viability traditionally observed with M.

tuberculosis whereby non-replicating mycobacteria do not survive

longer than 25 days after which they start to die at an accelerated

rate with less than 0.1% of the initial inoculum of non-replicating

Table 2. pfkA encodes a functional phosphofructokinase.

Strain (H37Rv background) PFK activity (nmol min21 crude protein mg21)

WT 7.2/7.4

DpfkA nd/nd

DpfkB 7.5/7.6

DpfkA complemented with pfkA 7.3/7.4

DpfkA complemented with pfkB nd/nd

‘His-PFKA 25.062.4 (nmol min21 purified protein mg21)

‘His-PFKB 1.760.02 (nmol min21 purified protein mg21)

Fructose-6-phosphate kinase activity of cell-free extracts from M. tuberculosis strains was measured by coupling fructose-1,6-bisphosphate formation to oxidation of
NADH with aldose, triosephosphate isomerase and a-glycerophosphate dehydrogenase. Each biological sample was measured in duplicate. The data represent the
values obtained for each duplicate of each biological sample. ‘ Enzymatic assay of purified recombinant His-tagged PFKA and His-tagged PFKB of M. tuberculosis was
performed in triplicates and results are expressed as mean 6 SD. Each experiment was repeated as least once independently and comparable values and trends were
observed. Legend: nd, not detectable.
doi:10.1371/journal.pone.0056037.t002

Figure 3. Western blot analysis of PFKB expression in wild-type
M. tuberculosis and mutants. (A) Detection of PFKB with rabbit-anti-
PFKB antibodies. (B) Ponseus-S stained of the membrane showing equal
loading of cell-free extracts. Lane 1: WT; 2: DpfkB ; 3: pfkB-
complemented DpfkA; 4: DpfkA ; 5: purified His-PFKB as control.
doi:10.1371/journal.pone.0056037.g003
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cells still viable at day 40 [27]. While the reason for this limited

long term viability has never been investigated, we hypothesized

that this phenomenon might be explained by the accumulation of

glucose-derived toxic metabolites over time. Consistently, when

grown in medium without glucose, M. tuberculosis viability was

maintained over 60 days, whereas a steep decrease in viability was

observed in the presence of glucose (Fig. 8) as reported before.

Furthermore, analysis of the intracellular metabolites pool showed

significantly higher level of glucose-6-phosphate in hypoxic cells

compared to non-hypoxic bacteria (Table 4). More importantly

the level of glucose-6-phosphate in cells cultured in the glucose-

supplemented medium was 2-fold higher than that in cells cultured

in absence of glucose. Interestingly, the rate of methylene blue

decolourization in culture without glucose was significantly slower

than that observed in culture with glucose, suggesting that the rate

of respiration in M. tuberculosis is slower in the absence of active

glycolysis. Altogether, these observations thus indicate that long-

term survival of hypoxic mycobacteria in the presence of

exogenous glucose is limited by accumulation of toxic glucose-

derived metabolic intermediates.

Discussion

M. tuberculosis is believed to encounter a range of different

microenvironments in its host as it progresses from the initial

infection of alveolar macrophages to the development of

granulomas and extra-pulmonary dissemination. One way that

M. tuberculosis copes with the challenge of changing and hostile

environments is by metabolic adaptation. M. tuberculosis is able to

utilize a variety of carbon sources at least in vitro and genomic

analysis has revealed the presence of a number of carbon

metabolic pathways, including the highly conserved glycolytic

pathway. Previous study has shown the presence of a functional

Figure 4. Phenotypic complementation of DpfkADpfkB E. coli mutant with mycobacterial pfkA and pfkB. (i) DpfkADpfkB E. coli RL257, (ii)
RL257 complemented with Mtb pfkA, (iii) RL257 complemented with Mtb pfkB and (iv) RL257 transformed with empty vector were grown on M9
minimal agar supplemented with (A) 0.2% glucose, (B) 0.2% glucose and IPTG and (C) glycerol.
doi:10.1371/journal.pone.0056037.g004

Figure 5. In vitro growth kinetic of DpfkA and DpfkB mutants on various carbon sources. Growth in liquid medium with glucose, glycerol or
acetate as sole carbon source (as indicated) was monitored for Wild-type, DpfkA, DpfkA complemented with pfkA, DpfkA complemented with pfkB,
and DpfkB M. tuberculosis strains (as indicated). Bacterial growth was monitored by OD absorbance at 600 nm over time. Results are representative of
at least two independent experiments.
doi:10.1371/journal.pone.0056037.g005
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glucose kinase which phosphorylates glucose to glucose-6-phos-

phate (Fig. 1) [29]. Here we demonstrated the presence in M.

tuberculosis H37Rv of a phosphofructokinase (PFK) activity, the key

regulatory enzyme of glycolysis. Similar to E. coli, two mycobac-

terial genes were annotated as PFK encoding genes, namely pfkA

and pfkB. In E. coli PFKB is a minor isoenzyme and accounts for

about 10% of the bacterial PFK activity [30]. Furthermore, a pfkA-

deleted E. coli mutant was shown to be able to grow on glucose

provided that PFKB was present and functional [24,31]. Here, we

have generated strong experimental evidence supporting that

PFKA accounts for the total M. tuberculosis PFK activity without

functional redundancy with PFKB. No PFK activity was detected

in crude extract from DpfkA M. tuberculosis mutant; the DpfkA M.

tuberculosis mutant could not be complemented with pfkB expressed

under a constitutive strong promoter; a PFK-deficient E. coli

mutant could be complemented when expressing M. tuberculosis

pfkA but not M. tuberculosis pfkB; purified recombinant M. tuberculosis

PFKA displayed a PFK activity in vitro while PFKB showed

minimal activity. Although purified recombinant PFKB catalyzes

fructose-6-phosphate in vitro, albeit at very low efficiency, it is not

able to complement the loss of PFKA in vivo. This suggests that

fructose-6-phosphate might not be the true substrate of M.

tuberculosis PFKB. Predictive three-dimensional protein structure

generated by Phyre2 server [32] showed that M. tuberculosis PFKB

shares 40% identity with E. coli PFKB (data not shown). Based on

the presence of the conserved catalytic motif GXGD in its amino

acid sequence, M. tuberculosis PFKB has been classified as a

member of the ribokinase superfamily, PFKB subfamily. Analysis

of T. gondii adenosine kinase’s crystal structure suggested that

enzymes from the ribokinase family are able to adapt easily to a

variety of sugar-based substrates [33]. Members of the PFKB

subfamily which share high degree of structural conservation have

been shown to phosphorylate a variety of substrates beside

fructose-6-phosphate; examples are fructose-1-phosphate in E. coli

Figure 6. Infection profile of DpfkA mutant in mouse. 8-weeks old female BALB/c mice were nasally infected with the wild-type (black circle) or
DpfkA (open circle) strains. Four animals per time point per group were used. Bacterial loads in lung (A) and spleen (B) were determined by CFU
counts. Data are expressed in Log10 CFU per organ as the mean 6 SD of four mice per group.
doi:10.1371/journal.pone.0056037.g006

Figure 7. Growth kinetic of DpfkA mutant under aerobic or hypoxic conditions. Growth in aerobic (A, B) or hypoxic (Wayne model) (C, D)
conditions was monitored over time for wild-type (open circle), DpfkA (open square) and complemented DpfkA (black triangle) strains as determined
by OD600 nm (A, B) or CFU counts (mean 6 SD of triplicates) (C, D) in Dubos medium with (A, C) or without (B, D) glucose. Results are representative of
at least two independent experiments.
doi:10.1371/journal.pone.0056037.g007
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[34,35] and tagatose-6-phosphate in S. aureus [36] and E. coli,

although with a lower efficacy than fructose-6-phosphate [37].

Thus, it is possible that M. tuberculosis PFKB is able to

phosphorylate sugar-based substrates other than fructose-6-phos-

phate. So far none of the studies on the kinases from the PFKB

subfamily have identified amino acid residues involved in substrate

specificity. As such the nature of the M. tuberculosis PFKB substrate

cannot be deduced from its amino acid sequence and has yet to be

elucidated.

Co-metabolism experiments showed a defect in cell viability

with DpfkA mutant upon entry into the stationary phase. The

attenuation phenotype was correlated with accumulation of toxic

metabolic intermediates in the glycolytic pathway upstream of

PFKA. Consistently, removal of glucose from the culture medium

restored viability of the DpfkA mutant. Significantly higher

intracellular pools of glucose-6-phosphate and fructose-6-phos-

phate in the DpfkA mutant, compared to the parental strain,

further supports the hypothesis that these sugar-phosphates may

be toxic to the bacterial cell and accumulate in a PFK-deficient

mutant. This finding is consistent with a previous study where we

showed that excessive metabolic intermediates such as glycerol

phosphate, dihydroxyacetone phosphate and methylglyoxal are

toxic to M. tuberculosis [28]. Accumulation of sugar-phosphate may

have various physiological consequences including mRNA desta-

bilization [38], stimulation of gene expression [39], and activation

of pyruvate kinase [40], all of which may contribute to impair the

cell viability. The toxic effect of sugar-phosphate in M. tuberculosis

was previously reported whereby accumulation of maltose-1-

phosphate leads to bacterial death in vitro and in mice [41]. It is of

interest to note that maltose-1-phosphate is a product of trehalose

catabolism with glucose-6-phosphate being a precursor of treha-

lose, thereby linking glycolysis and trehalose pathway. In addition

to the accumulation of toxic metabolic intermediates, the impact

of glycolysis disruption on other metabolic pathways may also play

a role in reduced cell viability. Also, it must be noticed that the

DpfkA mutant did not exhibit significant growth defect in standard

7H9 medium including during the stationary phase (data not

shown). This discrepancy between Dubos and 7H9 media may be

attributed to the higher concentration of glucose in Dubos

medium compared to 7H9 (0.75% versus 0.2%), with the idea

that a threshold glucose concentration may be necessary before a

toxic effect can be observed. However, other differences in the

composition between both media may also explain the difference

in the phenotype observed.

Interestingly, a detrimental effect of glucose was observed in

wild-type M. tuberculosis grown in vitro under hypoxia in the well-

established Wayne model. We showed that M. tuberculosis could

persist in a non-replicating state for much longer when glucose was

omitted in the culture medium. There has been much speculation

on the possible reasons of the limited persistence of M. tuberculosis

in the NRP2 phase of the Wayne model, such as nutrients

exhaustion or low levels of ATP. Here we show that the limited

mycobacterial persistence is linked to the presence of glucose in the

medium and is likely due to the accumulation of glucose-derived

toxic metabolic intermediates. We believe that this finding is of

great importance and advocates for revisiting the mechanisms

employed by M. tuberculosis for long-term persistence in the absence

of growth.

The metabolomic profile of M. tuberculosis infected murine

tissues was recently analyzed and revealed that the level of glucose

and glycogen in those tissues decreased along with the increase in

phospholipids level [42]. This may suggest that M. tuberculosis

switches from the carbohydrate to lipid metabolism in order to

adapt to its microenvironment. However, we did not observe any

significant difference between the DpfkA and parental strains in

their ability to colonize and persist in the mouse lungs and spleen.

This suggests that the glycolytic pathway is dispensable during

mice infection and also indicates that the toxic effect observed in

vitro in Dubos medium is not observed in vivo. It is therefore

possible that M. tuberculosis replicates and persists in an environ-

ment where access to glucose is limited. Alternatively, since

attenuation of the DpfkA mutant was seen mostly under hypoxia in

vitro, absence of hypoxic granuloma or lesions in mice may not

allow recapitulating such attenuation [43]. It would be interesting

to determine the fitness of DpfkA mutant in animal models where

hypoxic granulomatous lesions are formed. Regardless, the

Table 3. Concentration of intracellular glucose-6-phosphate and fructose-6-phosphate in aerobic M. tuberculosis strains.

Glucose-6-phosphate (mmol crude protein g21) Fructose-6-phosphate (mmol crude protein g21)

Glucose + 2 + 2

WT 31.1/29.8 19.3/18.5 7.9/6.4 2.6/1.9

DpfkA 55.0/55.1 32.8/31.3 14.2/13.9 3.7/3.8

Concentration of intracellular metabolites of mid-log phase M. tuberculosis strains cultured in complete Dubos liquid medium or Dubos liquid medium without glucose.
Each biological sample was measured in duplicate. The data represent the values obtained for each duplicate of each biological sample. This experiment was repeated
as least once independently and comparable values and trends were observed.
doi:10.1371/journal.pone.0056037.t003

Figure 8. Growth kinetic of M. tuberculosis H37Rv under
hypoxia in the presence or absence of glucose. Growth under
hypoxia (Wayne model) of wild-type M. tuberculosis was monitored by
determining the number of CFU at various time-point up to Day 60 in
the presence (black square) or absence (open square) of glucose. Data
are expressed as mean 6 SD of triplicates. Results are representative of
two independent experiments. Arrow heads mark the start of
decolourization of methylene blue and full arrows mark the complete
decolourization of methylene blue in culture medium with (black) or
without (red) glucose.
doi:10.1371/journal.pone.0056037.g008
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maintenance of an intact glycolytic pathway in M. tuberculosis

throughout evolution indicates that glycolysis could play an

important role in mycobacterial infection and persistence in

microenvironments not recapitulated in mice.

In conclusion, we provide here the experimental evidence that

PFKA is responsible for the overall PFK activity in M. tuberculosis

and that there is no functional redundancy with PFKB.

Furthermore, our work demonstrates that in the presence of

exogenous glucose, hypoxic mycobacteria tend to accumulate

toxic glucose-derived metabolic intermediates that impair the

bacilli long-term survival. Disruption of the glycolytic pathway

further accentuates accumulation of these toxic intermediates.
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5. Muñoz-Elı́as EJ, McKinney JD (2005) Mycobacterium tuberculosis isocitrate lyases 1
and 2 are jointly required for in vivo growth and virulence. Nat Med 11: 638–

644.
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