507 research outputs found
Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory
The cubic (c) and monoclinic (m) polymorphs of Gd2O3 were studied using the
combined analysis of several materials science techniques - X-ray diffraction
(XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy
(XPS), and photoluminescence (PL) spectroscopy. Density functional theory (DFT)
based calculations for the samples under study were performed as well. The
cubic phase of gadolinium oxide (c-Gd2O3) synthesized using a precipitation
method exhibits spheroidal-like nanoclusters with well-defined edges assembled
from primary nanoparticles with an average size of 50 nm, whereas the
monoclinic phase of gadolinium oxide (m-Gd2O3) deposited using explosive
pyrolysis has a denser structure compared with natural gadolinia. This phase
also has a structure composed of three-dimensional complex agglomerates without
clear-edged boundaries that are ~21 nm in size plus a cubic phase admixture of
only 2 at. % composed of primary edge-boundary nanoparticles ~15 nm in size.
These atomic features appear in the electronic structure as different defects
([Gd...O-OH] and [Gd...O-O]) and have dissimilar contributions to the
charge-transfer processes among the appropriate electronic states with
ambiguous contributions in the Gd 5p - O 2s core-like levels in the valence
band structures. The origin of [Gd...O-OH] defects found by XPS was
well-supported by PL analysis. The electronic and atomic structures of the
synthesized gadolinias calculated using DFT were compared and discussed on the
basis of the well-known joint OKT-van der Laan model, and good agreement was
established.Comment: 27 pages, 10 figures, accepted in Appl. Surf. Sc
Asymptotically at spinning scalar, Dirac and Proca stars
Einstein's gravity minimally coupled to free, massive, classical fundamental fields admits particle-like solutions. These are asymptotically flat, everywhere non-singular configurations that realise Wheeler's concept of a geon: a localised lump of self-gravitating energy whose existence is anchored on the non-linearities of general relativity, trivialising in the flat spacetime limit. In [1] the key properties for the existence of these solutions (also referred to as stars or self-gravitating solitons) were discussed – which include a harmonic time dependence in the matter field –, and a comparative analysis of the stars arising in the Einstein-Klein-Gordon, Einstein-Dirac and Einstein-Proca models was performed, for the particular case of static, spherically symmetric spacetimes. In the present work we generalise this analysis for spinning solutions. In particular, the spinning Einstein-Dirac stars are reported here for the first time. Our analysis shows that the high degree of universality observed in the spherical case remains when angular momentum is allowed. Thus, as classical field theory solutions, these self-gravitating solitons are rather insensitive to the fundamental fermionic or bosonic nature of the corresponding field, displaying similar features. We describe some physical properties and, in particular, we observe that the angular momentum of the spinning stars satisfies the quantisation condition , for all models, where N is the particle number and m is an integer for the bosonic fields and a half-integer for the Dirac field. The way in which this quantisation condition arises, however, is more subtle for the non-zero spin fields.publishe
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
Measurement of the ratios of branching fractions and
The ratios of branching fractions
and are measured, assuming isospin symmetry, using a
sample of proton-proton collision data corresponding to 3.0 fb of
integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The
tau lepton is identified in the decay mode
. The measured values are
and
, where the first uncertainty is
statistical and the second is systematic. The correlation between these
measurements is . Results are consistent with the current average
of these quantities and are at a combined 1.9 standard deviations from the
predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb
public pages
- …