955 research outputs found

    Compliance with follow up cytology after discharge from the colposcopy clinic.

    Get PDF
    Cervical cancer represents the second common cancer in women and is a major public health issue in Ireland and worldwide. Despite appropriate treatment of precancerous lesions, women with dysplasia are at relatively increased risk, and require follow up. We aimed to evaluate the compliance rate with follow up cytology advice given to patients discharged from the colposcopy clinic and to identify predictive factors for poor compliance. This is a retrospective cohort study of patients initially managed in our institution in 2001. Patients were evaluated for adherence with the recommendations received at the time of discharge from the clinic. Of the 116 women that were initially contacted, 100 agreed to participate in the study (86% response rate). Sixty women (60%) were entirely compliant. While older patients (\u3e 40 years) were significantly less likely to show complete compliance (OR: 0.12; 950/ Cl: 0.02-0.58; p = 0.009)

    Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model

    Get PDF
    An extension of the Anisotropic United Atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (–C≡N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile

    An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea.</p> <p>Results</p> <p>Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1) Phlebobranchia + Thaliacea + Aplousobranchia, 2) Appendicularia, and 3) Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models suggest a sister-group relationship between Salpida and Pyrosomatida within Thaliacea.</p> <p>Conclusion</p> <p>An updated phylogenetic framework for tunicates is provided based on phylogenetic analyses using the most realistic evolutionary models currently available for ribosomal molecules and an unprecedented taxonomic sampling. Detailed analyses of the 18S rRNA gene allowed a clear definition of the major tunicate groups and revealed contrasting evolutionary dynamics among major lineages. The resolving power of this gene nevertheless appears limited within the clades composed of Phlebobranchia + Thaliacea + Aplousobranchia and Pyuridae + Styelidae, which were delineated as spots of low resolution. These limitations underline the need to develop new nuclear markers in order to further resolve the phylogeny of this keystone group in chordate evolution.</p

    Mosaic DNA imports with interspersions of recipient sequence after natural transformation of Helicobacter pylori

    Get PDF
    Helicobacter pylori colonizes the gastric mucosa of half of the human population, causing gastritis, ulcers, and cancer. H. pylori is naturally competent for transformation by exogenous DNA, and recombination during mixed infections of one stomach with multiple H. pylori strains generates extensive allelic diversity. We developed an in vitro transformation protocol to study genomic imports after natural transformation of H. pylori. The mean length of imported fragments was dependent on the combination of donor and recipient strain and varied between 1294 bp and 3853 bp. In about 10% of recombinant clones, the imported fragments of donor DNA were interrupted by short interspersed sequences of the recipient (ISR) with a mean length of 82 bp. 18 candidate genes were inactivated in order to identify genes involved in the control of import length and generation of ISR. Inactivation of the antimutator glycosylase MutY increased the length of imports, but did not have a significant effect on ISR frequency. Overexpression of mutY strongly increased the frequency of ISR, indicating that MutY, while not indispensable for ISR formation, is part of at least one ISR-generating pathway. The formation of ISR in H. pylori increases allelic diversity, and contributes to the uniquely low linkage disequilibrium characteristic of this pathogen

    Frequent burning promotes invasions of alien plants into a mesic African savanna

    Get PDF
    Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Real-Time PCR Improves Helicobacter pylori Detection in Patients with Peptic Ulcer Bleeding

    Get PDF
    Background and aims: Histological and rapid urease tests to detect H. pylori in biopsy specimens obtained during peptic ulcer bleeding episodes (PUB) often produce false-negative results. We aimed to examine whether immunohistochemistry and real-time PCR can improve the sensitivity of these biopsies. Patients and Methods: We selected 52 histology-negative formalin-fixed paraffin-embedded biopsy specimens obtained during PUB episodes. Additional tests showed 10 were true negatives and 42 were false negatives. We also selected 17 histology-positive biopsy specimens obtained during PUB to use as controls. We performed immunohistochemistry staining and real-time PCR for 16S rRNA, ureA, and 23S rRNA for H. pylori genes on all specimens. Results: All controls were positive for H. pylori on all PCR assays and immunohistochemical staining. Regarding the 52 initially negative biopsies, all PCR tests were significantly more sensitive than immunohistochemical staining (p<0.01). Sensitivity and specificity were 55% and 80% for 16S rRNA PCR, 43% and 90% for ureA PCR, 41% and 80% for 23S rRNA PCR, and 7% and 100% for immunohistochemical staining, respectively. Combined analysis of PCR assays for two genes were significantly more sensitive than ureA or 23S rRNA PCR tests alone (p<0.05) and marginally better than 16S rRNA PCR alone. The best combination was 16S rRNA+ureA, with a sensitivity of 64% and a specificity of 80%. Conclusions: Real-time PCR improves the detection of H. pylori infection in histology-negative formalin-fixed paraffin-embedded biopsy samples obtained during PUB episodes. The low reported prevalence of H. pylori in PUB may be due to the failure of conventional tests to detect infection

    Kalirin: a novel genetic risk factor for ischemic stroke

    Get PDF
    Cerebrovascular and cardiovascular diseases are the leading causes of death and disability worldwide. They are complex disorders resulting from the interplay of genetic and environmental factors, and may share several susceptibility genes. Several recent studies have implicated variants of the Kalirin (KALRN) gene with susceptibility to cardiovascular and metabolic phenotypes, but no studies have yet been performed in stroke patients. KALRN is involved, among others, in the inhibition of inducible nitric oxide synthase, in the regulation of ischemic signal transduction, and in neuronal morphogenesis, plasticity, and stability. The goal of the present study was to determine whether SNPs in the KALRN region on 3q13, which includes the Ropporin gene (ROPN1), predispose to ischemic stroke (IS) in a cohort of Portuguese patients and controls. We genotyped 34 tagging SNPs in the KALRN and ROPN1 chromosomal region on 565 IS patients and 517 unrelated controls, and performed genotype imputation for 405 markers on chromosome 3. We tested the single-marker association of these SNPs with IS. One SNP (rs4499545) in the ROPN1-KALRN intergenic region and two SNPs in KALRN (rs17286604 and rs11712619) showed significant (P < 0.05) allelic and genotypic (unadjusted and adjusted for hypertension, diabetes, and ever smoking) association with IS risk. Thirty-two imputed SNPs also showed an association at P < 0.05, and actual genotyping of three of these polymorphisms (rs7620580, rs6438833, and rs11712039) validated their association. Furthermore, rs11712039 was associated with IS (0.001 < P < 0.01) in a recent well-powered genomewide association study (Ikram et al. 2009). These studies suggest that variants in the KALRN gene region constitute risk factors for stroke and that KALRN may represent a common risk factor for vascular diseases

    Higher-order multipole amplitudes in charmonium radiative transitions

    Full text link
    Using 24 million ψψ(2S)\psi' \equiv \psi(2S) decays in CLEO-c, we have searched for higher multipole admixtures in electric-dipole-dominated radiative transitions in charmonia. We find good agreement between our data and theoretical predictions for magnetic quadrupole (M2) amplitudes in the transitions ψγχc1,2\psi' \to \gamma \chi_{c1,2} and χc1,2γJ/ψ\chi_{c1,2} \to \gamma J/\psi, in striking contrast to some previous measurements. Let b2Jb_2^J and a2Ja_2^J denote the normalized M2 amplitudes in the respective aforementioned decays, where the superscript JJ refers to the angular momentum of the χcJ\chi_{cJ}. By performing unbinned maximum likelihood fits to full five-parameter angular distributions, we determine the ratios a2J=1/a2J=2=0.670.13+0.19a_2^{J=1}/a_2^{J=2} = 0.67^{+0.19}_{-0.13} and a2J=1/b2J=1=2.270.99+0.57a_2^{J=1}/b_2^{J=1} = -2.27^{+0.57}_{-0.99}, where the theoretical predictions are independent of the charmed quark magnetic moment and are a2J=1/a2J=2=0.676±0.071a_2^{J=1}/a_2^{J=2} = 0.676 \pm 0.071 and a2J=1/b2J=1=2.27±0.16a_2^{J=1}/b_2^{J=1} = -2.27 \pm 0.16.Comment: 32 pages, 7 figures, acceptance updat

    Adjuvant gemcitabine versus NEOadjuvant gemcitabine/oxaliplatin plus adjuvant gemcitabine in resectable pancreatic cancer: a randomized multicenter phase III study (NEOPAC study)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite major improvements in the perioperative outcome of pancreas surgery, the prognosis of pancreatic cancer after curative resection remains poor. Adjuvant chemotherapy increases disease-free and overall survival, but this treatment cannot be offered to a significant proportion of patients due to the surgical morbidity. In contrast, almost all patients can receive (neo)adjuvant chemotherapy before surgery. This treatment is safe and effective, and has resulted in a median survival of 26.5 months in a recent phase II trial. Moreover, neoadjuvant chemotherapy improves the nutritional status of patients with pancreatic cancer. This multicenter phase III trial (NEOPAC) has been designed to explore the efficacy of neoadjuvant chemotherapy.</p> <p>Methods/Design</p> <p>This is a prospective randomized phase III trial. Patients with resectable cytologically proven adenocarcinoma of the pancreatic head are eligible for this study. All patients must be at least 18 years old and must provide written informed consent. An infiltration of the superior mesenteric vein > 180° or major visceral arteries are considered exclusion criteria. Eligible patients will be randomized to surgery followed by adjuvant gemcitabine (1000 mg/m<sup>2</sup>) for 6 months or neoadjuvant chemotherapy (gemcitabine 1000 mg/m<sup>2</sup>, oxaliplatin 100 mg/m<sup>2</sup>) followed by surgery and the same adjuvant treatment. Neoadjuvant chemotherapy is given four times every two weeks. The staging as well as the restaging protocol after neoadjuvant chemotherapy include computed tomography of chest and abdomen and diagnostic laparoscopy. The primary study endpoint is progression-free survival. According to the sample size calculation, 155 patients need to be randomized to each treatment arm. Disease recurrence will be documented by scheduled computed tomography scans 9, 12, 15, 21 and thereafter every 6 months until disease progression. For quality control, circumferential resection margins are marked intraoperatively, and representative histological sections will be centrally reviewed by a dedicated pathologist.</p> <p>Discussion</p> <p>The NEOPAC study will determine the efficacy of neoadjuvant chemotherapy in pancreatic cancer for the first time and offers a unique potential for translational research. Furthermore, this trial will provide the unbiased overall survival of all patients undergoing surgery for resectable cancer of the pancreatic head.</p> <p>Trial registration</p> <p>clinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01314027">NCT01314027</a></p
    corecore