147 research outputs found

    Grooming of Dynamic Traffic in WDM Star and Tree Networks Using Genetic Algorithm

    Full text link
    The advances in WDM technology lead to the great interest in traffic grooming problems. As traffic often changes from time to time, the problem of grooming dynamic traffic is of great practical value. In this paper, we discuss dynamic grooming of traffic in star and tree networks. A genetic algorithm (GA) based approach is proposed to support arbitrary dynamic traffic patterns, which minimizes the number of ADM's and wavelengths. To evaluate the algorithm, tighter bounds are derived. Computer simulation results show that our algorithm is efficient in reducing both the numbers of ADM's and wavelengths in tree and star networks.Comment: 15 page

    Dark Energy and Neutrino CPT Violation

    Full text link
    In this paper we study the dynamical CPT violation in the neutrino sector induced by the dark energy of the Universe. Specifically we consider a dark energy model where the dark energy scalar derivatively interacts with the right-handed neutrinos. This type of derivative coupling leads to a cosmological CPT violation during the evolution of the background field of the dark energy. We calculate the induced CPT violation of left-handed neutrinos and find the CPT violation produced in this way is consistent with the present experimental limit and sensitive to the future neutrino oscillation experiments, such as the neutrino factory.Comment: 10 pages, 2 figures. Typos corrected and references added. To be published in EPJ

    Modelling of strain effects in manganite films

    Full text link
    Thickness dependence and strain effects in films of La1xAxMnO3La_{1-x}A_xMnO_3 perovskites are analyzed in the colossal magnetoresistance regime. The calculations are based on a generalization of a variational approach previously proposed for the study of manganite bulk. It is found that a reduction in the thickness of the film causes a decrease of critical temperature and magnetization, and an increase of resistivity at low temperatures. The strain is introduced through the modifications of in-plane and out-of-plane electron hopping amplitudes due to substrate-induced distortions of the film unit cell. The strain effects on the transition temperature and transport properties are in good agreement with experimental data only if the dependence of the hopping matrix elements on the MnOMnMn-O-Mn bond angle is properly taken into account. Finally variations of the electron-phonon coupling linked to the presence of strain turn out important in influencing the balance of coexisting phases in the filmComment: 7 figures. To be published on Physical Review

    CD34+cells augment endothelial cell differentiation of CD14+endothelial progenitor cells in vitro

    Get PDF
    Neovascularization by endothelial progenitor cells (EPC) for the treatment of ischaemic diseases has been a topic of intense research. The CD34+ cell is often designated as EPC, because it contributes to repair of ischaemic injuries through neovascularization. However, incorporation of CD34+ cells into the neovasculature is limited, suggesting another role which could be paracrine. CD14+ cells can also differentiate into endothelial cells and contribute to neovascularization. However, the low proliferative capacity of CD14+ cell-derived endothelial cells hampers their use as therapeutic cells. We made the assumption that an interaction between CD34+ and CD14+ cells augments endothelial differentiation of the CD14+ cells. In vitro, the influence of CD34+ cells on the endothelial differentiation capacity of CD14+ cells was investigated. Endothelial differentiation was analysed by expression of endothelial cell markers CD31, CD144, von Willebrand Factor and endothelial Nitric Oxide Synthase. Furthermore, we assessed proliferative capacity and endothelial cell function of the cells in culture. In monocultures, 63% of the CD14+-derived cells adopted an endothelial cell phenotype, whereas in CD34+/CD14+ co-cultures 95% of the cells showed endothelial cell differentiation. Proliferation increased up to 12% in the CD34+/CD14+ co-cultures compared to both monocultures. CD34-conditioned medium also increased endothelial differentiation of CD14+ cells. This effect was abrogated by hepatocyte growth factor neutralizing antibodies, but not by interleukin-8 and monocyte chemoattractant protein-1 neutralizing antibodies. We show that co-culturing of CD34+ and CD14+ cells results in a proliferating population of functional endothelial cells, which may be suitable for treatment of ischaemic diseases such as myocardial infarction

    Prunella vulgaris: A comprehensive review of chemical constituents, pharmacological effects and clinical applications.

    Get PDF
    Prunella vulgaris (PV) is a perennial herb belonging to the Labiate family and is widely distributed in northeastern Asian countries such as Korea, Japan, and China. It is reported to display diverse biological activities including anti-microbial, anti-cancer, and anti-inflammation as determined by in vitro or in vivo studies. So far, about 200 compounds have been isolated from PV plant and majority of these have been characterized mainly as triterpenoids, sterols and flavonoids, followed by coumarins, phenylpropanoids, polysaccharides and volatile oils. This review summarizes and analyzes the current knowledge on the chemical constituents, pharmacological activities, mechanisms of action and clinical applications of the PV plant including its potential as a future medicinal plant. Although some of the chemical constituents of the PV plant and their mechanism of action have been investigated the biological activities of many of these remain unknown and further clinical trials are required to further enhance its reputation as a medicinal plant

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
    corecore