862 research outputs found
Loss of Different Inverted Repeat Copies from the Chloroplast Genomes of Pinaceae and Cupressophytes and Influence of Heterotachy on the Evaluation of Gymnosperm Phylogeny
The relationships among the extant five gymnosperm groups—gnetophytes, Pinaceae, non-Pinaceae conifers (cupressophytes), Ginkgo, and cycads—remain equivocal. To clarify this issue, we sequenced the chloroplast genomes (cpDNAs) from two cupressophytes, Cephalotaxus wilsoniana and Taiwania cryptomerioides, and 53 common chloroplast protein-coding genes from another three cupressophytes, Agathis dammara, Nageia nagi, and Sciadopitys verticillata, and a non-Cycadaceae cycad, Bowenia serrulata. Comparative analyses of 11 conifer cpDNAs revealed that Pinaceae and cupressophytes each lost a different copy of inverted repeats (IRs), which contrasts with the view that the same IR has been lost in all conifers. Based on our structural finding, the character of an IR loss no longer conflicts with the “gnepines” hypothesis (gnetophytes sister to Pinaceae). Chloroplast phylogenomic analyses of amino acid sequences recovered incongruent topologies using different tree-building methods; however, we demonstrated that high heterotachous genes (genes that have highly different rates in different lineages) contributed to the long-branch attraction (LBA) artifact, resulting in incongruence of phylogenomic estimates. Additionally, amino acid compositions appear more heterogeneous in high than low heterotachous genes among the five gymnosperm groups. Removal of high heterotachous genes alleviated the LBA artifact and yielded congruent and robust tree topologies in which gnetophytes and Pinaceae formed a sister clade to cupressophytes (the gnepines hypothesis) and Ginkgo clustered with cycads. Adding more cupressophyte taxa could not improve the accuracy of chloroplast phylogenomics for the five gymnosperm groups. In contrast, removal of high heterotachous genes from data sets is simple and can increase confidence in evaluating the phylogeny of gymnosperms
Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting
Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression
The Gut Microbiome and Aquatic Toxicology: An Emerging Concept for Environmental Health
The microbiome plays an essential role in the health and onset of diseases in all animals, including humans. The microbiome has emerged as a central theme in environmental toxicology, as microbes interact with the host immune system in addition to its role in chemical detoxification. Pathophysiological changes in the gastrointestinal tissue caused by ingested chemicals, and metabolites generated from microbial biodegradation, can lead to systemic adverse effects. This critical review dissects what we know about the impacts of environmental contaminants on the microbiome of aquatic species, with special emphasis on the gut microbiome. We highlight some of the known major gut epithelium proteins in vertebrate hosts that are targets for chemical perturbation, proteins that also directly cross‐talk with the microbiome. These proteins may act as molecular initiators for altered gut function, and we propose a general framework for an adverse outcome pathway that considers gut dysbiosis as a major contributing factor to adverse apical endpoints. We present two case studies, nanomaterials and hydrocarbons with special emphasis on the Deepwater Horizon oil spill, to illustrate how investigations into the microbiome can improve understanding of adverse outcomes. Lastly, we present strategies to functionally relate chemical‐induced gut dysbiosis with adverse outcomes, as this is required to demonstrate cause‐effect relationships. Further investigations into the toxicant‐microbiome relationship may prove to be a major breakthrough for improving animal and human health. This article is protected by copyright. All rights reserve
Open X-Embodiment:Robotic learning datasets and RT-X models
Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train "generalist" X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. The project website is robotics-transformer-x.github.io
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Volume III. DUNE far detector technical coordination
open966siAcknowledgments
This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- A nd dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.openAbi B.; Acciarri R.; Acero M.A.; Adamov G.; Adams D.; Adinolfi M.; Ahmad Z.; Ahmed J.; Alion T.; Monsalve S.A.; Alt C.; Anderson J.; Andreopoulos C.; Andrews M.; Andrianala F.; Andringa S.; Ankowski A.; Antonova M.; Antusch S.; Aranda-Fernandez A.; Ariga A.; Arnold L.O.; Arroyave M.A.; Asaadi J.; Aurisano A.; Aushev V.; Autiero D.; Azfar F.; Back H.; Back J.J.; Backhouse C.; Baesso P.; Bagby L.; Bajou R.; Balasubramanian S.; Baldi P.; Bambah B.; Barao F.; Barenboim G.; Barker G.; Barkhouse W.; Barnes C.; Barr G.; Monarca J.B.; Barros N.; Barrow J.L.; Bashyal A.; Basque V.; Bay F.; Alba J.B.; Beacom J.F.; Bechetoille E.; Behera B.; Bellantoni L.; Bellettini G.; Bellini V.; Beltramello O.; Belver D.; Benekos N.; Neves F.B.; Berger J.; Berkman S.; Bernardini P.; Berner R.M.; Berns H.; Bertolucci S.; Betancourt M.; Bezawada Y.; Bhattacharjee M.; Bhuyan B.; Biagi S.; Bian J.; Biassoni M.; Biery K.; Bilki B.; Bishai M.; Bitadze A.; Blake A.; Siffert B.B.; Blaszczyk F.; Blazey G.; Blucher E.; Boissevain J.; Bolognesi S.; Bolton T.; Bonesini M.; Bongrand M.; Bonini F.; Booth A.; Booth C.; Bordoni S.; Borkum A.; Boschi T.; Bostan N.; Bour P.; Boyd S.; Boyden D.; Bracinik J.; Braga D.; Brailsford D.; Brandt A.; Bremer J.; Brew C.; Brianne E.; Brice S.J.; Brizzolari C.; Bromberg C.; Brooijmans G.; Brooke J.; Bross A.; Brunetti G.; Buchanan N.; Budd H.; Caiulo D.; Calafiura P.; Calcutt J.; Calin M.; Calvez S.; Calvo E.; Camilleri L.; Caminata A.; Campanelli M.; Caratelli D.; Carini G.; Carlus B.; Carniti P.; Terrazas I.C.; Carranza H.; Castillo A.; Castromonte C.; Cattadori C.; Cavalier F.; Cavanna F.; Centro S.; Cerati G.; Cervelli A.; Villanueva A.C.; Chalifour M.; Chang C.; Chardonnet E.; Chatterjee A.; Chattopadhyay S.; Chaves J.; Chen H.; Chen M.; Chen Y.; Cherdack D.; Chi C.; Childress S.; Chiriacescu A.; Cho K.; Choubey S.; Christensen A.; Christian D.; Christodoulou G.; Church E.; Clarke P.; Coan T.E.; Cocco A.G.; Coelho J.; Conley E.; Conrad J.; Convery M.; Corwin L.; Cotte P.; Cremaldi L.; Cremonesi L.; Crespo-Anadon J.I.; Cristaldo E.; Cross R.; Cuesta C.; Cui Y.; Cussans D.; Dabrowski M.; Motta H.D.; Peres L.D.S.; David Q.; Davies G.S.; Davini S.; Dawson J.; De K.; Almeida R.M.D.; Debbins P.; Bonis I.D.; Decowski M.; Gouvea A.D.; Holanda P.C.D.; Astiz I.L.D.I.; Deisting A.; Jong P.D.; Delbart A.; Delepine D.; Delgado M.; Dell'acqua A.; Lurgio P.D.; Neto J.R.D.M.; Demuth D.M.; Dennis S.; Densham C.; Deptuch G.; Roeck A.D.; Romeri V.D.; Vries J.D.; Dharmapalan R.; Dias M.; Diaz F.; Diaz J.; Domizio S.D.; Giulio L.D.; Ding P.; Noto L.D.; Distefano C.; Diurba R.; Diwan M.; Djurcic Z.; Dokania N.; Dolinski M.; Domine L.; Douglas D.; Drielsma F.; Duchesneau D.; Duffy K.; Dunne P.; Durkin T.; Duyang H.; Dvornikov O.; Dwyer D.; Dyshkant A.; Eads M.; Edmunds D.; Eisch J.; Emery S.; Ereditato A.; Escobar C.; Sanchez L.E.; Evans J.J.; Ewart E.; Ezeribe A.C.; Fahey K.; Falcone A.; Farnese C.; Farzan Y.; Felix J.; Fernandez-Martinez E.; Menendez P.F.; Ferraro F.; Fields L.; Filkins A.; Filthaut F.; Fitzpatrick R.S.; Flanagan W.; Fleming B.; Flight R.; Fowler J.; Fox W.; Franc J.; Francis K.; Franco D.; Freeman J.; Freestone J.; Fried J.; Friedland A.; Fuess S.; Furic I.; Furmanski A.P.; Gago A.; Gallagher H.; Gallego-Ros A.; Gallice N.; Galymov V.; Gamberini E.; Gamble T.; Gandhi R.; Gandrajula R.; Gao S.; Garcia-Gamez D.; Garcia-Peris M.A.; Gardiner S.; Gastler D.; Ge G.; Gelli B.; Gendotti A.; Gent S.; Ghorbani-Moghaddam Z.; Gibin D.; Gil-Botella I.; Girerd C.; Giri A.; Gnani D.; Gogota O.; Gold M.; Gollapinni S.; Gollwitzer K.; Gomes R.A.; Bermeo L.G.; Fajardo L.S.G.; Gonnella F.; Gonzalez-Cuevas J.; Goodman M.C.; Goodwin O.; Goswami S.; Gotti C.; Goudzovski E.; Grace C.; Graham M.; Gramellini E.; Gran R.; Granados E.; Grant A.; Grant C.; Gratieri D.; Green P.; Green S.; Greenler L.; Greenwood M.; Greer J.; Griffith C.; Groh M.; Grudzinski J.; Grzelak K.; Gu W.; Guarino V.; Guenette R.; Guglielmi A.; Guo B.; Guthikonda K.; Gutierrez R.; Guzowski P.; Guzzo M.M.; Gwon S.; Habig A.; Hackenburg A.; Hadavand H.; Haenni R.; Hahn A.; Haigh J.; Haiston J.; Hamernik T.; Hamilton P.; Han J.; Harder K.; Harris D.A.; Hartnell J.; Hasegawa T.; Hatcher R.; Hazen E.; Heavey A.; Heeger K.M.; Hennessy K.; Henry S.; Morquecho M.H.; Herner K.; Hertel L.; Hesam A.S.; Hewes J.; Pichardo A.H.; Hill T.; Hillier S.J.; Himmel A.; Hoff J.; Hohl C.; Holin A.; Hoppe E.; Horton-Smith G.A.; Hostert M.; Hourlier A.; Howard B.; Howell R.; Huang J.; Huang J.; Hugon J.; Iles G.; Iliescu A.M.; Illingworth R.; Ioannisian A.; Itay R.; Izmaylov A.; James E.; Jargowsky B.; Jediny F.; Jesus-Valls C.; Ji X.; Jiang L.; Jimenez S.; Jipa A.; Joglekar A.; Johnson C.; Johnson R.; Jones B.; Jones S.; Jung C.; Junk T.; Jwa Y.; Kabirnezhad M.; Kaboth A.; Kadenko I.; Kamiya F.; Karagiorgi G.; Karcher A.; Karolak M.; Karyotakis Y.; Kasai S.; Kasetti S.P.; Kashur L.; Kazaryan N.; Kearns E.; Keener P.; Kelly K.J.; Kemp E.; Ketchum W.; Kettell S.; Khabibullin M.; Khotjantsev A.; Khvedelidze A.; Kim D.; King B.; Kirby B.; Kirby M.; Klein J.; Koehler K.; Koerner L.W.; Kohn S.; Koller P.P.; Kordosky M.; Kosc T.; Kose U.; Kostelecky V.; Kothekar K.; Krennrich F.; Kreslo I.; Kudenko Y.; Kudryavtsev V.; Kulagin S.; Kumar J.; Kumar R.; Kuruppu C.; Kus V.; Kutter T.; Lambert A.; Lande K.; Lane C.E.; Lang K.; Langford T.; Lasorak P.; Last D.; Lastoria C.; Laundrie A.; Lawrence A.; Lazanu I.; Lazur R.; Le T.; Learned J.; Lebrun P.; Miotto G.L.; Lehnert R.; De Oliveira M.L.; Leitner M.; Leyton M.; Li L.; Li S.; Li S.; Li T.; Li Y.; Liao H.; Lin C.; Lin S.; Lister A.; Littlejohn B.R.; Liu J.; Lockwitz S.; Loew T.; Lokajicek M.; Lomidze I.; Long K.; Loo K.; Lorca D.; Lord T.; Losecco J.; Louis W.C.; Luk K.; Luo X.; Lurkin N.; Lux T.; Luzio V.P.; MacFarland D.; MacHado A.; MacHado P.; MacIas C.; MacIer J.; Maddalena A.; Madigan P.; Magill S.; Mahn K.; Maio A.; Maloney J.A.; Mandrioli G.; Maneira J.C.; Manenti L.; Manly S.; Mann A.; Manolopoulos K.; Plata M.M.; Marchionni A.; Marciano W.; Marfatia D.; Mariani C.; Maricic J.; Marinho F.; Marino A.D.; Marshak M.; Marshall C.; Marshall J.; Marteau J.; Martin-Albo J.; Martinez N.; Caicedo D.A.M.; Martynenko S.; Mason K.; Mastbaum A.; Masud M.; Matsuno S.; Matthews J.; Mauger C.; Mauri N.; Mavrokoridis K.; Mazza R.; Mazzacane A.; Mazzucato E.; McCluskey E.; McConkey N.; McFarland K.S.; McGrew C.; McNab A.; Mefodiev A.; Mehta P.; Melas P.; Mellinato M.; Mena O.; Menary S.; Mendez H.; Menegolli A.; Meng G.; Messier M.; Metcalf W.; Mewes M.; Meyer H.; Miao T.; Michna G.; Miedema T.; Migenda J.; Milincic R.; Miller W.; Mills J.; Milne C.; Mineev O.; Miranda O.G.; Miryala S.; Mishra C.; Mishra S.; Mislivec A.; Mladenov D.; Mocioiu I.; Moffat K.; Moggi N.; Mohanta R.; Mohayai T.A.; Mokhov N.; Molina J.A.; Bueno L.M.; Montanari A.; Montanari C.; Montanari D.; Zetina L.M.M.; Moon J.; Mooney M.; Moor A.; Moreno D.; Morgan B.; Morris C.; Mossey C.; Motuk E.; Moura C.A.; Mousseau J.; Mu W.; Mualem L.; Mueller J.; Muether M.; Mufson S.; Muheim F.; Muir A.; Mulhearn M.; Muramatsu H.; Murphy S.; Musser J.; Nachtman J.; Nagu S.; Nalbandyan M.; Nandakumar R.; Naples D.; Narita S.; Navas-Nicolas D.; Nayak N.; Nebot-Guinot M.; Necib L.; Negishi K.; Nelson J.K.; Nesbit J.; Nessi M.; Newbold D.; Newcomer M.; Newhart D.; Nichol R.; Niner E.; Nishimura K.; Norman A.; Northrop R.; Novella P.; Nowak J.A.; Oberling M.; Campo A.O.D.; Olivier A.; Onel Y.; Onishchuk Y.; Ott J.; Pagani L.; Pakvasa S.; Palamara O.; Palestini S.; Paley J.M.; Pallavicini M.; Palomares C.; Pantic E.; Paolone V.; Papadimitriou V.; Papaleo R.; Papanestis A.; Paramesvaran S.; Parke S.; Parsa Z.; Parvu M.; Pascoli S.; Pasqualini L.; Pasternak J.; Pater J.; Patrick C.; Patrizii L.; Patterson R.B.; Patton S.; Patzak T.; Paudel A.; Paulos B.; Paulucci L.; Pavlovic Z.; Pawloski G.; Payne D.; Pec V.; Peeters S.J.; Penichot Y.; Pennacchio E.; Penzo A.; Peres O.L.; Perry J.; Pershey D.; Pessina G.; Petrillo G.; Petta C.; Petti R.; Piastra F.; Pickering L.; Pietropaolo F.; Pillow J.; Plunkett R.; Poling R.; Pons X.; Poonthottathil N.; Pordes S.; Potekhin M.; Potenza R.; Potukuchi B.V.; Pozimski J.; Pozzato M.; Prakash S.; Prakash T.; Prince S.; Prior G.; Pugnere D.; Qi K.; Qian X.; Raaf J.; Raboanary R.; Radeka V.; Rademacker J.; Radics B.; Rafique A.; Raguzin E.; Rai M.; Rajaoalisoa M.; Rakhno I.; Rakotondramanana H.; Rakotondravohitra L.; Ramachers Y.; Rameika R.; Delgado M.R.; Ramson B.; Rappoldi A.; Raselli G.; Ratoff P.; Ravat S.; Razafinime H.; Real J.; Rebel B.; Redondo D.; Reggiani-Guzzo M.; Rehak T.; Reichenbacher J.; Reitzner S.D.; Renshaw A.; Rescia S.; Resnati F.; Reynolds A.; Riccobene G.; Rice L.C.; Rielage K.; Rigaut Y.; Rivera D.; Rochester L.; Roda M.; Rodrigues P.; Alonso M.R.; Rondon J.R.; Roeth A.; Rogers H.; Rosauro-Alcaraz S.; Rossella M.; Rout J.; Roy S.; Rubbia A.; Rubbia C.; Russell B.; Russell J.; Ruterbories D.; Saakyan R.; Sacerdoti S.; Safford T.; Sahu N.; Sala P.; Samios N.; Sanchez M.; Sanders D.A.; Sankey D.; Santana S.; Santos-Maldonado M.; Saoulidou N.; Sapienza P.; Sarasty C.; Sarcevic I.; Savage G.; Savinov V.; Scaramelli A.; Scarff A.; Scarpelli A.; Schaffer T.; Schellman H.; Schlabach P.; Schmitz D.; Scholberg K.; Schukraft A.; Segreto E.; Sensenig J.; Seong I.; Sergi A.; Sergiampietri F.; Sgalaberna D.; Shaevitz M.; Shafaq S.; Shamma M.; Sharma H.R.; Sharma R.; Shaw T.; Shepherd-Themistocleous C.; Shin S.; Shooltz D.; Shrock R.; Simard L.; Simos N.; Sinclair J.; Sinev G.; Singh J.; Singh V.; Sipos R.; Sippach F.; Sirri G.; Sitraka A.; Siyeon K.; Smargianaki D.; Smith A.; Smith A.; Smith E.; Smith P.; Smolik J.; Smy M.; Snopok P.; Nunes M.S.; Sobel H.; Soderberg M.; Salinas C.J.S.; Soldner-Rembold S.; Solomey N.; Solovov V.; Sondheim W.E.; Sorel M.; Soto-Oton J.; Sousa A.; Soustruznik K.; Spagliardi F.; Spanu M.; Spitz J.; Spooner N.J.; Spurgeon K.; Staley R.; Stancari M.; Stanco L.; Steiner H.; Stewart J.; Stillwell B.; Stock J.; Stocker F.; Stokes T.; Strait M.; Strauss T.; Striganov S.; Stuart A.; Summers D.; Surdo A.; Susic V.; Suter L.; Sutera C.; Svoboda R.; Szczerbinska B.; Szelc A.; Talaga R.; Tanaka H.; Oregui B.T.; Tapper A.; Tariq S.; Tatar E.; Tayloe R.; Teklu A.; Tenti M.; Terao K.; Ternes C.A.; Terranova F.; Testera G.; Thea A.; Thompson J.L.; Thorn C.; Timm S.; Tonazzo A.; Torti M.; Tortola M.; Tortorici F.; Totani D.; Toups M.; Touramanis C.; Trevor J.; Trzaska W.H.; Tsai Y.T.; Tsamalaidze Z.; Tsang K.; Tsverava N.; Tufanli S.; Tull C.; Tyley E.; Tzanov M.; Uchida M.A.; Urheim J.; Usher T.; Vagins M.; Vahle P.; Valdiviesso G.; Valencia E.; Vallari Z.; Valle J.W.; Vallecorsa S.; Berg R.V.; De Water R.G.V.; Forero D.V.; Varanini F.; Vargas D.; Varner G.; Vasel J.; Vasseur G.; Vaziri K.; Ventura S.; Verdugo A.; Vergani S.; Vermeulen M.A.; Verzocchi M.; De Souza H.V.; Vignoli C.; Vilela C.; Viren B.; Vrba T.; Wachala T.; Waldron A.V.; Wallbank M.; Wang H.; Wang J.; Wang Y.; Wang Y.; Warburton K.; Warner D.; Wascko M.; Waters D.; Watson A.; Weatherly P.; Weber A.; Weber M.; Wei H.; Weinstein A.; Wenman D.; Wetstein M.; While M.R.; White A.; Whitehead L.H.; Whittington D.; Wilking M.J.; Wilkinson C.; Williams Z.; Wilson F.; Wilson R.J.; Wolcott J.; Wongjirad T.; Wood K.; Wood L.; Worcester E.; Worcester M.; Wret C.; Wu W.; Wu W.; Xiao Y.; Yang G.; Yang T.; Yershov N.; Yonehara K.; Young T.; Yu B.; Yu J.; Zalesak J.; Zambelli L.; Zamorano B.; Zani A.; Zazueta L.; Zeller G.; Zennamo J.; Zeug K.; Zhang C.; Zhao M.; Zhivun E.; Zhu G.; Zimmerman E.D.; Zito M.; Zucchelli S.; Zuklin J.; Zutshi V.; Zwaska R.Abi B.; Acciarri R.; Acero M.A.; Adamov G.; Adams D.; Adinolfi M.; Ahmad Z.; Ahmed J.; Alion T.; Monsalve S.A.; Alt C.; Anderson J.; Andreopoulos C.; Andrews M.; Andrianala F.; Andringa S.; Ankowski A.; Antonova M.; Antusch S.; Aranda-Fernandez A.; Ariga A.; Arnold L.O.; Arroyave M.A.; Asaadi J.; Aurisano A.; Aushev V.; Autiero D.; Azfar F.; Back H.; Back J.J.; Backhouse C.; Baesso P.; Bagby L.; Bajou R.; Balasubramanian S.; Baldi P.; Bambah B.; Barao F.; Barenboim G.; Barker G.; Barkhouse W.; Barnes C.; Barr G.; Monarca J.B.; Barros N.; Barrow J.L.; Bashyal A.; Basque V.; Bay F.; Alba J.B.; Beacom J.F.; Bechetoille E.; Behera B.; Bellantoni L.; Bellettini G.; Bellini V.; Beltramello O.; Belver D.; Benekos N.; Neves F.B.; Berger J.; Berkman S.; Bernardini P.; Berner R.M.; Berns H.; Bertolucci S.; Betancourt M.; Bezawada Y.; Bhattacharjee M.; Bhuyan B.; Biagi S.; Bian J.; Biassoni M.; Biery K.; Bilki B.; Bishai M.; Bitadze A.; Blake A.; Siffert B.B.; Blaszczyk F.; Blazey G.; Blucher E.; Boissevain J.; Bolognesi S.; Bolton T.; Bonesini M.; Bongrand M.; Bonini F.; Booth A.; Booth C.; Bordoni S.; Borkum A.; Boschi T.; Bostan N.; Bour P.; Boyd S.; Boyden D.; Bracinik J.; Braga D.; Brailsford D.; Brandt A.; Bremer J.; Brew C.; Brianne E.; Brice S.J.; Brizzolari C.; Bromberg C.; Brooijmans G.; Brooke J.; Bross A.; Brunetti G.; Buchanan N.; Budd H.; Caiulo D.; Calafiura P.; Calcutt J.; Calin M.; Calvez S.; Calvo E.; Camilleri L.; Caminata A.; Campanelli M.; Caratelli D.; Carini G.; Carlus B.; Carniti P.; Terrazas I.C.; Carranza H.; Castillo A.; Castromonte C.; Cattadori C.; Cavalier F.; Cavanna F.; Centro S.; Cerati G.; Cervelli A.; Villanueva A.C.; Chalifour M.; Chang C.; Chardonnet E.; Chatterjee A.; Chattopadhyay S.; Chaves J.; Chen H.; Chen M.; Chen Y.; Cherdack D.; Chi C.; Childress S.; Chiriacescu A.; Cho K.; Choubey S.; Christensen A.; Christian D.; Christodoulou G.; Church E.; Clarke P.; Coan T.E.; Cocco A.G.; Coelho J.; Conley E.; Conrad J.; Convery M.; Corwin L.; Cotte P.; Cremaldi L.; Cremonesi L.; Crespo-Anadon J.I.; Cristaldo E.; Cross R.; Cuesta C.; Cui Y.; Cussans D.; Dabrowski M.; Motta H.D.; Peres L.D.S.; David Q.; Davies G.S.; Davini S.; Dawson J.; De K.; Almeida R.M.D.; Debbins P.; Bonis I.D.; Decowski M.; Gouvea A.D.; Holanda P.C.D.; Astiz I.L.D.I.; Deisting A.; Jong P.D.; Delbart A.; Delepine D.; Delgado M.; Dell'acqua A.; Lurgio P.D.; Neto J.R.D.M.; Demuth D.M.; Dennis S.; Densham C.; Deptuch G.; Roeck A.D.; Romeri V.D.; Vries J.D.; Dharmapalan R.; Dias M.; Diaz F.; Diaz J.; Domizio S.D.; Giulio L.D.; Ding P.; Noto L.D.; Distefano C.; Diurba R.; Diwan M.; Djurcic Z.; Dokania N.; Dolinski M.; Domine L.; Douglas D.; Drielsma F.; Duchesneau D.; Duffy K.; Dunne P.; Durkin T.; Duyang H.; Dvornikov O.; Dwyer D.; Dyshkant A.; Eads M.; Edmunds D.; Eisch J.; Emery S.; Ereditato A.; Escobar C.; Sanchez L.E.; Evans J.J.; Ewart E.; Ezeribe A.C.; Fahey K.; Falcone A.; Farnese C.; Farzan Y.; Felix J.; Fernandez-Martinez E.; Menendez P.F.; Ferraro F.; Fields L.; Filkins A.; Filthaut F.; Fitzpatrick R.S.; Flanagan W.; Fleming B.; Flight R.; Fowler J.; Fox W.; Franc J.; Francis K.; Franco D.; Freeman J.; Freestone J.; Fried J.; Friedland A.; Fuess S.; Furic I.; Furmanski A.P.; Gago A.; Gallagher H.; Gallego-Ros A.; Gallice N.; Galymov V.; Gamberini E.; Gamble T.; Gandhi R.; Gandrajula R.; Gao S.; Garcia-Gamez D.; Garcia-Peris M.A.; Gardiner S.; Gastler D.; Ge G.; Gelli B.; Gendotti A.; Gent S.; Ghorbani-Moghaddam Z.; Gibin D.; Gil-Botella I.; Girerd C.; Giri A.; Gnani D.; Gogota O.; Gold M.; Gollapinni S.; Gollwitzer K.; Gomes R.A.; Bermeo L.G.; Fajardo L.S.G.; Gonnella F.; Gonzalez-Cuevas J.; Goodman M.C.; Goodwin O.; Goswami S.; Gotti C.; Goudzovski E.; Grace C.; Graham M.; Gramellini E.; Gran R.; Granados E.; Grant A.; Grant C.; Gratieri D.; Green P.; Green S.; Greenler L.; Greenwood M.; Greer J.; Griffith C.; Groh M.; Grudzinski J.; Grzelak K.; Gu W.; Guarino V.; Guenette R.; Guglielmi A.; Guo B.; Guthikonda K.; Gutierrez R.; Guzowski P.; Guzzo M.M.; Gwon S.; Habig A.; Hackenburg A.; Hadavand H.; Haenni R.; Hahn A.; Haigh J.; Haiston J.; Hamernik T.; Hamilton P.; Han J.; Harder K.; Harris D.A.; Hartnell J.; Hasegawa T.; Hatcher R.; Hazen E.; Heavey A.; Heeger K.M.; Hennessy K.; Henry S.; Morquecho M.H.; Herner K.; Hertel L.; Hesam A.S.; Hewes J.; Pichardo A.H.; Hill T.; Hillier S.J.; Himmel A.; Hoff J.; Hohl C.; Holin A.; Hoppe E.; Horton-Smith G.A.; Hostert M.; Hourlier A.; Howard B.; Howell R.; Huang J.; Huang J.; Hugon J.; Iles G.; Iliescu A.M.; Illingworth R.; Ioannisian A.; Itay R.; Izmaylov A.; James E.; Jargowsky B.; Jediny F.; Jesus-Valls C.; Ji X.; Jiang L.; Jimenez S.; Jipa A.; Joglekar A.; Johnson C.; Johnson R.; Jones B.; Jones S.; Jung C.; Junk T.; Jwa Y.; Kabirnezhad M.; Kaboth A.; Kadenko I.; Kamiya F.; Karagiorgi G.; Karcher A.; Karolak M.; Karyotakis Y.; Kasai S.; Kasetti S.P.; Kashur L.; Kazaryan N.; Kearns E.; Keener P.; Kelly K.J.; Kemp E.; Ketchum W.; Kettell S.; Khabibullin M.; Khotjantsev A.; Khvedelidze A.; Kim D.; King B.; Kirby B.; Kirby M.; Klein J.; Koehler K.; Koerner L.W.; Kohn S.; Koller P.P.; Kordosky M.; Kosc T.; Kose U.; Kostelecky V.; Kothekar K.; Krennrich F.; Kreslo I.; Kudenko Y.; Kudryavtsev V.; Kulagin S.; Kumar J.; Kumar R.; Kuruppu C.; Kus V.; Kutter T.; Lambert A.; Lande K.; Lane C.E.; Lang K.; Langford T.; Lasorak P.; Last D.; Lastoria C.; Laundrie A.; Lawrence A.; Lazanu I.; Lazur R.; Le T.; Learned J.; Lebrun P.; Miotto G.L.; Lehnert R.; De Oliveira M.L.; Leitner M.; Leyton M.; Li L.; Li S.; Li S.; Li T.; Li Y.; Liao H.; Lin C.; Lin S.; Lister A.; Littlejohn B.R.; Liu J.; Lockwitz S.; Loew T.; Lokajicek M.; Lomidze I.; Long K.; Loo K.; Lorca D.; Lord T.; Losecco J.; Louis W.C.; Luk K.; Luo X.; Lurkin N.; Lux T.; Luzio V.P.; MacFarland D.; MacHado A.; MacHado P.; MacIas C.; MacIer J.; Maddalena A.; Madigan P.; Magill S.; Mahn K.; Maio A.; Maloney J.A.; Mandrioli G.; Maneira J.C.; Manenti L.; Manly S.; Mann A.; Manolopoulos K.; Plata M.M.; Marchionni A.; Marciano W.; Marfatia D.; Mariani C.; Maricic J.; Marinho F.; Marino A.D.; Marshak M.; Marshall C.; Marshall J.; Marteau J.; Martin-Albo J.; Martinez N.; Caicedo D.A.M.; Martynenko S.; Mason K.; Mastbaum A.; Masud M.; Matsuno S.; Matthews J.; Mauger C.; Mauri N.; Mavrokoridis K.; Mazza R.; Mazzacane A.; Mazzucato E.; McCluskey E.; McConkey N.; McFarland K.S.; McGrew C.; McNab A.; Mefodiev A.; Mehta P.; Melas P.; Mellinato M.; Mena O.; Menary S.; Mendez H.; Menegolli A.; Meng G.; Messier M.; Metcalf W.; Mewes M.; Meyer H.; Miao T.; Michna G.; Miedema T.; Migenda J.; Milincic R.; Miller W.; Mills J.; Milne C.; Mineev O.; Miranda O.G.; Miryala S.; Mishra C.; Mishra S.; Mislivec A.; Mladenov D.; Mocioiu I.; Moffat K.; Moggi N.; Mohanta R.; Mohayai T.A.; Mokhov N.; Molina J.A.; Bueno L.M.; Montanari A.; Montanari C.; Montanari D.; Zetina L.M.M.; Moon J.; Mooney M.; Moor A.; Moreno D.; Morgan B.; Morris C.; Mossey C.; Motuk E.; Moura C.A.; Mousseau J.; Mu W.; Mualem L.; Mueller J.; Muether M.; Mufson S.; Muheim F.; Muir A.; Mulhearn M.; Muramatsu H.; Murphy S.; Musser J.; Nachtman J.; Nagu S.; Nalbandyan M.; Nandakumar R.; Naples D.; Narita S.; Navas-Nicolas D.; Nayak N.; Nebot-Guinot M.; Necib L.; Negishi K.; Nelson J.K.; Nesbit J.; Nessi M.; Newbold D.; Newcomer M.; Newhart D.; Nichol R.; Niner E.; Nishimura K.; Norman A.; Northrop R.; Novella P.; Nowak J.A.; Oberling M.; Campo A.O.D.; Olivier A.; Onel Y.; Onishchuk Y.; Ott J.; Pagani L.; Pakvasa S.; Palamara O.; Palestini S.; Paley J.M.; Pallavicini M.; Palomares C.; Pantic E.; Paolone V.; Papadimitriou V.; Papaleo R.; Papanestis A.; Paramesvaran S.; Parke S.; Parsa Z.; Parvu M.; Pascoli S.; Pasqualini L.; Pasternak J.; Pater J.; Patrick C.; Patrizii L.; Patterson R.B.; Patton S.; Patzak T.; Paudel A.; Paulos B.; Paulucci L.; Pavlovic Z.; Pawloski G.; Payne D.; Pec V.; Peeters S.J.; Penichot Y.; Pennacchio E.; Penzo A.; Peres O.L.; Perry J.; Pershey D.; Pessina G.; Petrillo G.; Petta C.; Petti R.; Piastra F.; Pickering
Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment
The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach
Experiment Simulation Configurations Approximating DUNE TDR
The Deep Underground Neutrino Experiment (DUNE) is a next-generation
long-baseline neutrino oscillation experiment consisting of a high-power,
broadband neutrino beam, a highly capable near detector located on site at
Fermilab, in Batavia, Illinois, and a massive liquid argon time projection
chamber (LArTPC) far detector located at the 4850L of Sanford Underground
Research Facility in Lead, South Dakota. The long-baseline physics sensitivity
calculations presented in the DUNE Physics TDR, and in a related physics paper,
rely upon simulation of the neutrino beam line, simulation of neutrino
interactions in the near and far detectors, fully automated event
reconstruction and neutrino classification, and detailed implementation of
systematic uncertainties. The purpose of this posting is to provide a
simplified summary of the simulations that went into this analysis to the
community, in order to facilitate phenomenological studies of long-baseline
oscillation at DUNE. Simulated neutrino flux files and a GLoBES configuration
describing the far detector reconstruction and selection performance are
included as ancillary files to this posting. A simple analysis using these
configurations in GLoBES produces sensitivity that is similar, but not
identical, to the official DUNE sensitivity. DUNE welcomes those interested in
performing phenomenological work as members of the collaboration, but also
recognizes the benefit of making these configurations readily available to the
wider community.Comment: 15 pages, 6 figures, configurations in ancillary files, v2 corrects a
typ
Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment
The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the ν_e spectral parameters of the neutrino burst will be considered
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design
- …
