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Abstract The microbiome plays an essential role in the health and onset of diseases in all 

animals, including humans. The microbiome has emerged as a central theme in environmental 

toxicology, as microbes interact with the host immune system in addition to its role in chemical 

detoxification. Pathophysiological changes in the gastrointestinal tissue caused by ingested 

chemicals, and metabolites generated from microbial biodegradation, can lead to systemic 

adverse effects. This critical review dissects what we know about the impacts of environmental 

contaminants on the microbiome of aquatic species, with special emphasis on the gut 

microbiome. We highlight some of the known major gut epithelium proteins in vertebrate hosts 

that are targets for chemical perturbation, proteins that also directly cross-talk with the 

microbiome. These proteins may act as molecular initiators for altered gut function, and we 

propose a general framework for an adverse outcome pathway that considers gut dysbiosis as a 

major contributing factor to adverse apical endpoints. We present two case studies, 

nanomaterials and hydrocarbons with special emphasis on the Deepwater Horizon oil spill, to 

illustrate how investigations into the microbiome can improve understanding of adverse 

outcomes. Lastly, we present strategies to functionally relate chemical-induced gut dysbiosis 

with adverse outcomes, as this is required to demonstrate cause-effect relationships. Further 

investigations into the toxicant-microbiome relationship may prove to be a major breakthrough 

for improving animal and human health. This article is protected by copyright. All rights 

reserved 

Key words: gut dysbiosis, short chain fatty acids, inflammation, adverse outcome pathway, 

polycyclic aromatic hydrocarbons, nanomaterials 
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1. The importance of the microbiome in health and disease 

 A microbiome is defined as any collection of microbiota (bacteria, archaea, viruses, and 

eukaryotes). The immediate environment of these microorganisms is also typically included in 

the definition of the microbiome, as biotic and abiotic characteristics of the surrounding 

environment can influence the composition of the microbiome (Marchesi and Ravel 2015). 

Microbiomes are ubiquitous, occurring in our environment (e.g. soil, water, air microbiomes), as 

well as in association with organisms (e.g. gastrointestinal, lung, skin microbiomes). 

Microbiomes that establish symbiotic relationships with organisms often offer important 

biological services to the host.  These symbiotic microbiomes are often referred to as functional 

microbiomes because they perform important biological functions for the host.  While the 

majority of the microbiome research has focused on the gastrointestinal microbiomes 

(esophagus, stomach, gut), there are numerous other tissues that contain a functional microbiome 

including the skin, respiratory (mouth, lungs, gills), and reproductive tissues (Cho and Blaser 

2012).  Thus, these assemblages show tissue-specific diversity and function, and are susceptible 

to modulation from the outside environment. 

 Microbial communities present in the tissues of humans, animals, and plants play an 

essential role in physiological homeostasis. These tissue-associated microbiomes are important 

for nutrient processing and uptake, providing immune defenses from pathogenic microbes, and 

for the biotransformation of toxicants (Hollister, Gao et al. 2014, Claus, Guillou et al. 2016). 

Disruption of the microbiome has been associated with a number of diseases including 

inflammatory bowel disease, diabetes, obesity, chronic obstructive pulmonary disease, cystic 

fibrosis, asthma, and vaginal pathological conditions (Fettweis, Alves et al. 2011, Huang, 
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Charlson et al. 2013, Kostic, Xavier et al. 2014, Surette 2014, Hartstra, Bouter et al. 2015, Huang 

and Boushey 2015).  However, it is not always clear whether microbiome dysbiosis is the root 

cause, a contributor, or a response to the environmental conditions associated with these 

diseases. 

2. Assessing structure and function of the microbiome: New tools of the trade   

 In the past, exploration of the microbiome was limited to selective culturing of 

pathogenic bacteria, as the density and diversity of most microbiomes precluded general culture 

and identification.  There was initially little interest in non-pathogenic bacteria until recently, 

when it became apparent that microbiomes play an essential role in the physiology of humans 

and animals (Hiergeist, Gläsner et al. 2015). As a result, emerging technologies have been 

optimized to determine the composition and function of the microbiome.  For example, the 

microbiota can play a functional role in the metabolism of carbohydrates, amino acids, and 

lipids, as well as sulphur and nitrogen metabolism and alkane degradation.  Currently, next 

generation sequencing platforms are the technology of choice for the majority of microbiome 

studies.  For strictly compositional analysis, investigators typically construct libraries targeting 

the hypervariable regions of the phylogenetically conserved 16S ribosomal RNA (rRNA). 

Universal primers are used in conserved regions to amplify these hypervariable regions, followed 

by sequencing and assignment of taxonomy as an Operational Taxonomic Unit (OTU), due to 

the fact that sequencing resolution to the genus or species level is not always possible using this 

approach.  This approach is more cost-effective than whole-genome or transcriptome-based 

approaches, because the targeted amplicons allow for focus on a single short-length gene for 

each bacterial species. As a result, total reads required for a representative sampling of the 
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microbiome are comparatively low, facilitating the use of more cost-effective platforms. 

Sequence results from 16S rRNA sequencing typically go through quality control procedures 

followed by assignment of OTUs, which can be used to determine the composition of 

microbiome samples. Numerous pipelines have been developed to help with this process, 

including Quantitative Insights Into Microbial Ecology (QIIME) and Mothur (Schloss, Westcott 

et al. 2009, Caporaso, Kuczynski et al. 2010). While many studies vary in their specific approach 

to sequencing and analyzing 16S based microbiome datasets, Benjamino et al. 2018 provides a 

general protocol for this analysis within a toxicological context (Benjamino, Beka et al. 2018).   

 A limitation of the 16S rRNA based approach is that only a very small part of the 

bacterial genome is used to identify the species, which only allows for determination of relative 

species abundance and provides little information about the functions of the species that are 

present. This approach also misses bacterial plasmids which may also present an interesting 

mechanisms for toxicant resistance. To bridge this gap, investigators have devised methods for 

linking 16S rRNA composition data with what is known about the essential functions of specific 

bacterial OTUs, using tools such as Phylogenetic Investigation of Communities by 

Reconstruction of Observed States (PICRUSt)(Langille, Zaneveld et al. 2013). This 

computational program uses knowledge of bacterial evolution and function to estimate the 

contributions of gene families to a metagenome using 16S rRNA sequencing data.  In doing so, 

biological insight can be achieved on the enrichment of processes that involve the microbiome.   

An increasing number of studies have moved to shotgun-based genomic and 

transcriptomic approaches that combine both bacterial community compositional analysis and 

gene-level information regarding essential functions performed by bacterial communities.  These 
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approaches are more expensive; however, they provide valuable information about which genes 

are present within a community (metagenomics) or which genes are being modulated within a 

specific experimental design or scenario (meta-transcriptomics). While analysis of these data is 

more complicated and requires specially designed pipelines like MEGAN, SAMSA, or 

MetaTrans, these types of approaches are necessary to better characterize the functionality of a 

specific microbial community (Huson, Auch et al. 2007, Martinez, Pozuelo et al. 2016, 

Westreich, Korf et al. 2016).  Further, recently developed tools such as PALADIN (Westbrook, 

Ramsdell et al. 2017) can be used to predict functional protein products from the metagenomics 

data and computational software continues to improve at a rapid rate, overcoming challenges 

accompanying these complex datasets to better address the functional aspects of the microbiome. 

Figure 1 outlines the role of each sequencing strategy in addressing questions about the 

microbiome. We point out that the proteome and the metabolome are also integral to this flow of 

information, and microbial composition and abundance is directly related to type and the 

concentration of metabolites that are produced in the gut. As such, while assessment of through 

metagenomics and metatranscriptomics can be used to predict the impacts of environmental 

stressors on microbiome function, investigators have also turned to metabolomics to determine if 

changes in composition or function at a gene level translates to alterations in levels of 

metabolites that are produced and/or metabolized by these microbiota and known to be 

associated with disease.  Mass spectrometry and nuclear magnetic resonance (NMR) based 

approaches have emerged as the go-to technology for both targeted and non-targeted assessment 

of metabolome in the gastrointestinal lumen (Saric, Wang et al. 2007, Theriot, Koenigsknecht et 

al. 2014, Sinha, Ahn et al. 2016).   
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3. Diversity of microbial communities among host species  

Data supporting/refuting the presence of core phyla for each host species have been 

presented in the literature but there continues to be some skepticism regarding the existence of 

these core microbial phyla. Much of this notion stems from the idea that hosts have co-evolved 

with microbes, such that a core set of microbes may be expected in all healthy individuals in a 

population or species (Lloyd-Price, Abu-Ali et al. 2016). Studies have therefore attempted to 

identify a core microbiome across various species, including humans, rodents and fish (Ley, 

Hamady et al. 2008, Patterson and Turnbaugh 2014). These “core microbiomes” (Arumugam, 

Raes et al. 2011) vary based on the species and geographical location among other factors, and in 

many cases, the variation between organisms of the same species is so great that it may match 

the variability in microbial composition between co-localized species [15, 26, 27]. Thus, it is 

becoming clear that microbiomes can show unique individual characteristics that have been 

shaped over development, life history, and their immediate environment (i.e. exposome).  

Additionally, recent studies have indicated that though the composition of an individual 

microbiome can vary greatly, multiple bacterial species can occupy the same functional niche 

(i.e. functional redundancy), in the gastrointestinal ecosystem, which further highlights the 

importance of studying microbial function over composition (Burke, Steinberg et al. 2011). 

3.1. Inter-species Variation 

A strong consensus for a core phyla assemblage in the mammalian gut has not been 

reached, but in general, Firmicutes, Bacteriodetes, Proteobacteria, Actinobacteria, 

Verrucomicrobia and Fusobacteria are phyla described to be predominant in the class Mammalia 

(Ley, Hamady et al. 2008, D’Argenio, Casaburi et al. 2014, Patterson and Turnbaugh 2014, 
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Bashiardes, Zilberman-Schapira et al. 2016, Hugon, Lagier et al. 2017). For example, laboratory 

mice gut microbiota are reportedly dominated by Bacteroidetes, Firmicutes, Actinobacteria, and 

Proteobacteria (Wu, Wen et al. 2016). Differences in species composition in mammalian 

microbiomes are expected, based on metagenomics studies that show that approximately one 

third of gut microbial genes in humans are found in all healthy people, leaving approximately 

two-thirds to vary between individuals. 

The characterization of microbiomes of aquatic organisms such as teleost fishes has been 

less of a focus compared to that of mammals.  In Danio rerio (zebrafish), the gut microbiome is 

dominated by two phyla: Proteobacteria and Fusobacteria, and in Ictalurus punctatus (channel 

catfish), Micropterus salmoides (largemouth bass) and Lepomis macrochirus (bluegill), the gut 

microbiomes are characterized by the dominance of those two phyla as well, with Bacteriodetes, 

Cyanobacteria, Firmicutes and Tenericutes also playing important roles (Roeselers, Mittge et al. 

2011, Larsen, Mohammed et al. 2014, Gaulke, Barton et al. 2016). Moreover, while studies of 

juvenile Sander lucioperca (pikeperch) and Lates calcarifer (Asian seabass) report that the gut 

microbiota is dominated by both Proteobacteria and Firmicutes, there also appears to be 

noteworthy species-specific characteristics, such as high prevalence of Actinobacteria (pikeperch 

only) and Bacteriodetes (Asian seabass only) (Xia, Lin et al. 2014, Dulski, Zakęś et al. 2018). In 

a study of both wild and cultured species, the gut microbiome of twelve bony fishes and three 

shark species was analyzed, and the two most abundant phyla in most samples were 

Proteobacteria and Firmicutes, with all samples containing 3-98% Proteobacteria and 1.3-45% 

Firmicutes (Givens, Ransom et al. 2015). Additionally, Actinobacteria, Bacteriodetes, and 

Fusobacteria were present, but lower in abundance in all fifteen species, and 13/15 species had 
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Spirochaetes and Tenericutes phyla present in their gut microbiome (Givens, Ransom et al. 

2015). By surveying a wide variety of cartilaginous and bony fishes, both wild and cultured, this 

study demonstrated a conservation of several main phyla in the fish gut microbiome, while also 

demonstrating the immense variation in the presence of phyla abundance within species [25]. 

While studies using mammalian models have moved towards functional studies of the 

microbiome, many studies using fish remain in the descriptive and characterization phases of the 

research. 

3.2. Intra-species Variation 

Individual and species variation in the microbiome poses another challenge for 

microbiome research. Variation between individuals of a population can be so great that it may 

not be possible to define the phylogenetic composition of a common or “normal” microbiome in 

a host species, which can hamper the ability to identify deviations from this composition, or 

“abnormal” microbiomes (Patterson and Turnbaugh 2014, Silbergeld 2017).  Some have pointed 

out that an individual’s microbiome is so unique that it is a fingerprint of individuality (Cryan 

and O’mahony 2011).  For example, in a study with pikeperch gut microbiomes, it was 

determined that the core microbiome of one fish was drastically different from the other fish in 

the study, yet all animals appeared healthy (Dulski, Zakęś et al. 2018). In a survey of fifteen 

different fish species, several species, including the Sphyraena barracuda (barracuda), were 

widely varied in their microbial structure across individuals, but all presented as healthy (Givens, 

Ransom et al. 2015). Additionally, there may be many “healthy” community structures of a gut 

microbiome that produce similar or equally beneficial effects on the host by production of the 

same enzymes and nutrients even if the OTUs are not the same [13] (Patterson and Turnbaugh 
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2014).  Furthermore, differences in sex, age, disease status and geography may affect 

microbiome health and bias results (Patterson and Turnbaugh 2014, Chi, Bian et al. 2016, 

Silbergeld 2017).  Additionally, the region of the gut from which samples are collected is 

influential in the OTUs detected (Kovatcheva-Datchary, Tremaroli et al. 2013). Importantly for 

fish species, there is variability in gut microbiomes between farmed and wild species (Givens, 

Ransom et al. 2015). However, as a fish develops, it has been reported that the differences 

between the environmental microbiome and the fish gut microbiome diverge, suggesting that 

location may not play as significant of a role as previously suggested (Stephens, Burns et al. 

2016). In a national survey of zebrafish from different labs in the United States, location did not 

appear to be the most significant predictor of microbial community structure, suggesting that 

selective factors within the host for a microbiome may play a larger role than the environment 

(Roeselers, Mittge et al. 2011).  

3.3. Functional Assessment of the Microbiome  

Community abundance in the gut microbiome varies across species and within 

individuals of the same species, and therefore the field is moving towards examination of how 

the function of the gut microbiome varies between and within species. Often, studies report 

major phyla that dominate the microbiome, but the functionality of species within one phyla can 

be drastically varied, and therefore these reports of “core microbiota” are not necessary 

indicative of differences in function between individuals of the same species and between 

species. Through a metagenomics study of algae, Burke et al. (2011) reported that although 16S 

sequences only revealed a 15% similarity between samples, the functional profiles of individuals 

were 70% similar, drawing skepticism on the importance of species diversity metrics alone 



 
 

  
 A

cc
ep

te
d

 

 

 

 

 

 

 

 

 

  

 
 
 

  P
re

pr
in

t   
 

   

This article is protected by copyright. All rights reserved 

 

(Burke, Steinberg et al. 2011). Instead of the core microbiome of phyla traditionally discussed, 

the authors frame the “core functional microbiome” as the most important factor for host 

function (Burke, Steinberg et al. 2011). This supports the theory that there are multiple “healthy” 

microbial profiles for any one individual that may interact with the host in a similar way, and 

while the diversity of the microbes may not converge into one core profile, the functional profile 

becomes similar over the life-span (Lloyd-Price, Abu-Ali et al. 2016, Flemer, Gaci et al. 2017). 

Studies using metagenomics and metatranscriptomics sequencing illustrate the movement away 

from OTUs to focus on functional aspects of the microbiota, and studies on the microbiome are 

expected to shift to a functional rather than compositional nature (Mai, Prosperi et al. 2016). It is 

also important to note that microbes interact with both the host and each other, which is often 

overlooked in studies (Mai, Prosperi et al. 2016), and this will also change functional aspects of 

the microbiome-host interaction. Select studies have attempted to bridge this gap by developing 

networks of interactions between bacteria or by determining how the addition of a bacterium 

through a probiotic leads to alterations in the abundance of other phyla (Gaulke, Barton et al. 

2016). 

4. The importance of the microbiome in environmental toxicology 

Given the important role that the microbiome has in wildlife and human health (Cho and 

Blaser 2012), it is important to understand how chemicals perturb the microbiome-host 

relationship, as the microbiome is expected to act as the conduit between chemical exposures and 

adverse effects. Studies now indicate that microbiome-host relationships can be modulated by 

chemical exposures (Jin, Wu et al. 2017). Thus, due to the ability of the microbiota to mediate 

the biotransformation for a wide variety of chemicals, there is now the recognition that microbial 
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communities can influence fundamental properties of toxicants in situ that include individual 

dose and availability. This can have long-term implications for adaptation of organisms in highly 

contaminated environments. As the field advances, the role of microbial communities in diverse 

aquatic organisms will become better defined in light of the evolutionary process.    

Similar to transcriptomics approaches that have been proposed in environmental 

biomonitoring scenarios (Feswick, Munkittrick et al. 2017), microbial community composition 

can serve as an important bio-indicator of exposures in animals. Indeed, earlier studies have 

proposed that gut bacterial structure can provide useful information on community level 

responses to short and long-term metal pollution in terrestrial isopods (Lapanje, Rupnik et al. 

2007). Given that there is a close association between microbiota and disease, changes in 

microbial community composition and function may serve to indicate exposure source, chemical 

type (i.e. microbiome fingerprint) and may be used to predict adverse effects on wildlife/human 

health. If such functional relationships can be established, microbial biomarkers can then be 

developed and sampled routinely in individuals collected from polluted environments.  

In the following sections, we describe targets of chemicals that, when perturbed, may 

disrupt microbiome-host interactions. These impacted relationships between a host’s physiology 

and a microbiome may explain in part adverse effects observed later in life; to illustrate this 

point, we present a generic adverse outcome pathway (AOP) that incorporates the microbiome 

with these specific targets in mind. We also present two case studies in aquatic organisms 

(nanomaterials and hydrocarbons) that demonstrate how different types of environmental 

pollutants of concern may induce microbial community shifts associated with adverse health 
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outcomes. Lastly, we suggest experiments moving forward that can strengthen the links between 

chemicals and specific disease-causing bacteria. 

5. Host-microbiome interactions: implications for environmental toxicology  

The gut is colonized by trillions of microbes that aid in digestion, modulate immune 

responses, and generate a variety of beneficial biological products through metabolic activities. 

Microbial metabolites are sensed by the host, and can thus play a key role in microbiome-host 

interactions (Holmes, Li et al. 2011). However, the repertoire of diet-derived, microbially-

produced bioactive metabolites in the gut is not completely documented. Most studied microbial 

metabolites include microbial fermentation of dietary carbohydrates to generate short-chain fatty 

acids (SCFAs), tryptophan metabolites, microbial conversion of primary bile acid to secondary 

bile acids and microbial conversion of choline and L-carnitine to trimethylamine (Figure 2). 

The microbiota is a source of nutritional signals, many of which have pleiotropic effects 

on the host and are energy substrates for gut epithelium. The SCFAs are the C1–C6 organic fatty 

acids that are formed in the gut of mammals by microbial fermentation of carbohydrates. Acetate 

(C2), propionate(C3) and butyrate(C4) account for 83% of SCFAs and are produced in an 

approximate ratio 3:1:1 (total concentration of 50–150 mM) (Rivière, Selak et al. 2016, Rooks and 

Garrett 2016). Metabolically, they are the most important microbial end products of the human 

colon fermentation process, as they display several physiological effects. SCFAs are generally 

epigenetic regulators of host physiology and have profound effects on the health of the host, 

promoting anti-inflammatory effects, improving colonic blood flow and oxygen uptake, providing 

energy sources for various organs (e.g. muscle, brain and intestinal cells), decreasing the pH of the 

colon (by increasing mineral absorption and decreasing ammonia absorption), lowering blood 
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cholesterol, improving insulin sensitivity and  promoting satiety (Rivière, Selak et al. 2016). 

Although the exact underlying mechanisms of action of SCFA have not been fully elucidated, 

there are at least two potential systems for molecular signaling by SCFAs: i) inhibition of histone 

deacetylases and ii) activations of a specific G-protein coupled receptors (GPCRs). Histone 

deacetylases (HDAC) are enzymes that remove the acetyl group from lysine located on histones 

which regulate gene expression. In addition, studies with macrophages indicate that SCFAs-

induced inhibition of HDAC is a crucial regulator of nuclear factor κB (NF-κB) activity and pro-

inflammatory innate immune responses (Tremaroli and Bäckhed 2012).  

Most importantly, studies show that there can be anti-inflammatory effects of HDAC 

inhibition by SCFAs to macrophages (Kendrick, O'boyle et al. 2010, Chang, Hao et al. 2014) 

(Rooks and Garrett 2016) (Tolhurst, Heffron et al. 2012, Tremaroli and Bäckhed 2012). The 

microbial SCFAs are thus involved in mediating the microbiota–gut–brain axis during appetite 

regulation. SCFA dependent GPRs activation also regulate immune function and promote anti-

inflammatory cell phenotype, via inhibiting NF-κB, a molecule that is an important transcription 

factor in gut and immune homeostasis (Usami, Kishimoto et al. 2008). GPCRs specific activation 

also has significant effects in the GI system including the following: (i) maintenance of mucosal 

immunity (increased transcription of mucin genes) (Willemsen, Koetsier et al. 2003, Gaudier, Jarry 

et al. 2004) (Singh, Gurav et al. 2014) (Macia, Tan et al. 2015), inflammatory cytokines (e.g. tumor 

necrotic factor alfa - TNFα) (Vinolo, Rodrigues et al. 2011)Treg) (Furusawa, Obata et al. 2013) v) 

suppressing chemotaxis and the expression of inflammatory genes in neutrophils (Vinolo, 

Rodrigues et al. 2011). In terms of relevance to toxicology, there are multiple examples of how 

these critical microbiome-host interactions and anti-inflammatory actions of SCFAs can be 
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perturbed by xenobiotics (e.g. metals, air pollutants). For example, in vivo exposure of mice to 

cadmium or environmental particulate matter was reported to significantly change the microbial 

profile (e.g. reduction of Bacteroidetes growth) which resulted in the decrease of the levels of 

SCFA such as the anti-inflammatory butyrate, which signifies that exposure to xenobiotics could 

perturb the gut microbiome and promote gut inflammatory diseases (Kish, Hotte et al. 2013, Liu, 

Li et al. 2014, Lu, Mahbub et al. 2015) . In general, the decrease of the SCFA by xenobiotic can 

be caused by the interaction with microbial metabolism or simply by changing 

Firmicutes/Bacteroidetes ratio) (Yang, Santisteban et al. 2015). 

Another group of bioactive compounds produced by the microbiome are tryptophan 

metabolites (e.g. indole, indole-3-acetate, and tryptamine) (Jin, Lee et al. 2014). These compounds 

are converted from the dietary amino acid tryptophan in the lumen of the gut primarily by bacteria 

within the genus Lactobacillus (Relman 2017). Tryptamine and indole-3-acetate are aryl-

hydrocarbon receptor (AhR) agonists, whereas indole is an AhR antagonist (Jin, Lee et al. 2014, 

Hubbard, Murray et al. 2015, Noakes 2015). AhR is a ligand-inducible transcription 

factor/receptor that is highly expressed by epithelial cells, tumors,  immune cells and both the IL-

17/IL-22–producing and IL-17/IL-22– nonproducing subsets of peripheral γδ T cells (Esser and 

Rannug 2015). AhR also strongly interacts with anthropogenic xenobiotics (e.g. benzo[a]pyrene, 

polyaromatic hydrocarbons), many of which are frequently found in municipal areas or in surface 

waters (e.g. oil spills, urban runoffs).  Due to a presence of AhR in immune cells, indoles (e.g. 

indole-3-acetic acid can affect adaptive immunity of the host, downregulating the differentiation 

of T-lymphocytes into proinflammatory T-helper (TH) 17 cells (Wilck, Matus et al. 2017) and 

promoting the AhR-dependent production of interleukin-22 in innate lymphoid cells (Qiu, Heller 
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et al. 2012), the cytokine responsible for protecting against intestinal inflammation (Jin, Lee et al. 

2014, Shanahan, van Sinderen et al. 2017). These tryptophan metabolites are crucial for 

appropriate AhR signaling, host-microbial mutualism, resistance to colonization and for protection 

from mucosal inflammation mediated toxicity (Lee, Cella et al. 2012). For example, it was reported 

in investigations using an intestinal cell model that indole inhibits TCDD (2,3,7,8-

tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression, decreasing the toxic effects of TCDD 

AhR-dependent effects of xenobiotics (Jin, Lee et al. 2014).   

In addition to dietary bioactive microbial metabolites, intestinal bacteria can transform the 

host-secreted bile acids to secondary bile acids (SBAs) through the enzymatic activity of 7α-

dehydroxylate (Cyp7a1), which is a highly active enzyme in several species of Clostridium 

(Holmes, Li et al. 2011). Gut microbiota can also modify the profile of bioactive molecules through 

production of SBA (e.g. deoxycholic acid, lithocolic acid) (Sears and Garrett 2014). Secondary 

bile acids can activate surface receptors (TGR5) and the farnesoid nuclear receptor (FXR), which 

has several downstream effects on GI motility and secretion, central signaling (satiety), 

metabolism, and immunity (Shanahan, van Sinderen et al. 2017). TGR5 can reduce inflammation 

by antagonizing TNFα and NF-κB-dependent induction of proinflammatory cytokines in 

macrophages and the intestine; this protects against gut dysbiosis and diseases such as colitis, 

inflammatory bowel disease, Crohn’s disease, and atherosclerosis (Chiang 2013, Yoneno, 

Hisamatsu et al. 2013). Dysregulation of the production of SBAs by xenobiotics might have 

significant effects on tissues expressing TGR5 (e.g brown adipocytes, macrophages/monocytes 

and hepatic Kupffer cells, gallbladder epithelium, and intestinal cells). Further, non-

physiologically upregulated levels of SBAs  can increase insulin sensitivity by stimulating 
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mitochondrial energy metabolism (Watanabe, Horai et al. 2011) and by the production of 

glucagon-like peptide 1 (GLP-1) in L-cells, which causes the secretion of insulin and regulates 

glucose homeostasis (Thomas, Gioiello et al. 2009). The gut microbiome may therefore contribute 

to the level of obesity and type 2 diabetes by influencing lipid and glucose metabolism though the 

composition of bile-acid pools and the modulation of FXR and TGR5 signaling. Further, 

unbalanced bile acids levels have an indirect conditioning influence on the composition of the 

microbiota by regulating the expression of host derived antimicrobial factors, such as regenerating 

islet-derived protein 3 gamma (REGIIIy), and influencing barrier function and inflammasome 

activity (Shanahan, van Sinderen et al. 2017). Altered bile acid profiles have been observed in 

patients with diabetes or obesity, further highlighting a possible involvement of bile acid 

metabolism in the pathogenesis of metabolic diseases (Gu, Wang et al. 2017). The levels of 

primary and secondary bile acids can also be reduced in response to chemical exposure, as was 

shown in a study with rats exposed to antibiotics, where a decrease in bile acids was related to a 

population shift in the gut microbiome and reduction in liver bile acid production and/or transport 

(Sun, Schnackenberg et al. 2013). Importantly, in the study, it was determined that deceases in 

SBAs and subsequent effects on host due to a tested xenobiotic were consistent with gut microbiota 

suppression, demonstrating the toxicological importance of SBAs.  

Another group of biologically active microbial metabolites are methylamines (e.g. 

methylamine, dimethylamine, trimethylamine, trimethylamine-N-oxide). Methylamines can be 

metabolized from choline and L-carnitine by gut microbiota and have been shown to be involved 

in many diseases such as obesity, diabetes, cardiovascular diseases, colorectal cancer and 

atherosclerotic processes (Holmes, Li et al. 2011, Wang, Klipfell et al. 2011, Xu, Wang et al. 
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2015). Methylamine, specifically trimethylamine-N-oxide (TMAO), is the main metabolite of 

interest in this group and represents another microbial metabolite linking the microbiome to the 

innate immunity of the host. TMAO can regulate the surface expression of macrophage scavenger 

receptors known to participate in the development of atherosclerosis (CD36, SR-A1) and enhance 

the level of cholesterol in macrophages, an early cellular hallmark in the atherosclerotic process 

(Wang, Klipfell et al. 2011). A high-fat diet can lead to the formation of intestinal microbiota 

which convert dietary choline into methylamines, reducing circulating plasma levels of 

phosphatidylcholine, producing similar effects of a choline-deficient diet and causing nonalcoholic 

steatohepatitis (NASH) (Dumas, Barton et al. 2006). Microbiota-induced choline deficiency 

therefore results in triglyceride accumulation in hepatocytes and hepatic secretion of very-low-

density lipoprotein, and the increase in the plasma levels of trimethylamine and its hepatic 

metabolite trimethylamine-N-oxide have been linked to atherosclerosis and cardiovascular disease 

(Schnabl and Brenner 2014). Although there are a lack of studies that would determine the effects 

of toxicants on the methylamine production and their subsequent role on host health, it is known 

that their production is influenced by pharmaceutically (e.g. antibiotics, resveratrol, meldonium) 

targeting bacteria that utilize or produce TMAO (Velasquez, Ramezani et al. 2016). 

One important point to make is that the aforementioned studies are in mammals, and this 

raises questions as to whether the mode of action of microbial signaling molecules can be 

translated to the majority of aquatic species. Many of the targets outlined above are evolutionary 

conserved, and have corresponding orthologs in fish. For example, AhR are present across a large 

spectrum of species including mammals, birds, amphibians, fish, cartilaginous fishes and 

invertebrates (Hahn 2002). Similarly, other targets (GPRCs, TGR5, FXR, NfkB) and responsive 
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gut peptides (PYY, GLP1) have orthologs in a wide breadth of aquatic organisms (Plisetskaya and 

Mommsen 1996, Conlon 2002, Fredriksson and Schioth 2005, Savan and Sakai 2006, Reschly, Ai 

et al. 2008, Hov, Keitel et al. 2010, Fink, Benard et al. 2015, Hodgkinson, Grayfer et al. 2015). 

Thus, studies are needed that determine whether or not these mechanisms are conserved in aquatic 

organisms, or whether micro-organisms in the gut act through different pathways to modulate 

immune signaling. 

A final point is that, due to recent advances in metabolomics, new bioactive microbial 

metabolites are being discovered at a rapid pace, however data on their potential systemic effects 

and mode of action are lacking. Microbial metabolites associated with diseases are reviewed in a 

study by Holmes at al. (2011), but in many cases, the functions of these metabolites are unknown 

(Holmes, Li et al. 2011). Microbial metabolites can affect broad sets of intestinal genes, as 

documented in a genome-wide study of intestinal tissue or isolated intestinal cell transcripts from 

mice reared either in the absence or presence of microbiota (Camp, Frank et al. 2014). This study 

showed that intestinal cells alter their transcriptional response by modulating hundreds of genes 

following microbial colonization.  It is clear that there are multiple targets for chemicals to can 

mediate effects within the host-microbiome cascade, with many new targets and metabolic 

pathways have yet to be discovered.  

6. Case studies investigating the microbiome in aquatic toxicology 

The effects of some environmental chemical contaminants on the microbiome of aquatic 

organisms has been investigated on a limited basis (Table 1). Examples include triclosan, the 

heavy metal cadmium, polycyclic aromatic hydrocarbons, nanomaterials and the fungicide 

imazalil (Gaulke, Barton et al. 2016, Brown-Peterson, Krasnec et al. 2017, Jin, Luo et al. 2017, 
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Zhai, Yu et al. 2017) to name a few. Studies have identified a number of OTUs from phyla to 

genera that can change in abundance in the gut, following contaminant exposures (Table1). As 

the majority of aquatic animal studies have focused on microbial community structure, with very 

few exploring functional significance, we include what is known about the role of some 

genera/species in Table 1. As mentioned in Section 2, the functional aspects of the microbiome 

for teleost fishes, as well as invertebrates, remains an exciting avenue of research to come.  

Below, we present two case studies that include (1) nanoparticles and (2) hydrocarbons 

with reference to the Deepwater Horizon oil spill to illustrate how investigations into the 

microbiome offer insight into adverse outcomes. Due to our experience with fish as a group, we 

focus on this taxa, but recognize that there are significant efforts underway to characterize 

microbiota in invertebrate marine organisms (Hentschel, Piel et al. 2012, Kelly, Williams et al. 

2014). Nanoparticles are a unique contaminant in terms of the microbiome, as these particles of 

concern can modulate the microbiota due to their small size and emergent properties compared to 

chemical contaminants. Additionally, although the focus of this review is placed on the toxicity 

of environmental chemicals to gut microbiome, data pertaining to other tissue microbiomes or in 

vitro microbial communities are also included in these case studies, as they improve our 

understanding as to the potential toxic effects on the gut microbiome following exposure to these 

emerging contaminants of concern. 

6.1.1 Nanomaterials 

Nanomaterials are classified as compounds with at least one dimension between 1 and 

100 nanometers and continue to be an emerging contaminant of concern in lieu of a booming 

nanotechnology industry. These particles are used in a significant number of consumer and 
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personal care products, including sunscreens, toothpaste, and food items such as chewing gum 

and Kool-Aid (Weir, Westerhoff et al. 2012). Nanomaterials are also used for a variety of 

industrial purposes, and are present in coatings, electronics, textiles, and filters (Piccinno, 

Gottschalk et al. 2012). The widespread application of nanomaterials presents several routes for 

environmental release and contamination (Keller and Lazareva 2013), ensuring that these 

chemicals require continued attention in toxicological studies. Nanomaterials have unique 

properties, such as nanoscale dimensions and high surface area-to-volume ratios that may confer 

mechanisms of dysbiosis in host microbiomes. Additionally, several types of nanomaterials have 

antimicrobial properties, including nano-titanium dioxide (nano-TiO2), nano-zinc oxide (nano-

ZnO), carbon nanomaterials, nano-silver (nano-Ag) (Brunet, Lyon et al. 2009, Rai, Yadav et al. 

2009, Marambio-Jones and Hoek 2010, Musee, Thwala et al. 2011, Sirelkhatim, Mahmud et al. 

2015). The antimicrobial behavior of these nanomaterials is the primary reason they are added to 

products (e.g. clothing, sterile surfaces, water filters) (Vance, Kuiken et al. 2015); however, this 

spurs new questions regarding their effects on important microbial communities. This is an 

emerging and relatively underexplored area of research as few studies quantify the effects of 

nanomaterials on the gut microbiome.  

The addition of nanomaterials to food, food packaging, and other domestic products 

presents a potential for environmental exposure, and methods for safety assessments for these 

chemicals are still in development (Bouwmeester, Brandhoff et al. 2014). Organic, metal, and 

metal oxides comprise the majority of domestic-related nanomaterials (Bouwmeester, Brandhoff 

et al. 2014); thus are more likely to be environmentally released (Keller and Lazareva 2013), and 

will therefore be the focus of this part of the review. 
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6.1.2 Metal Oxide Nanomaterials and the Gut Microbiome 

Metal oxide nanomaterials such as nano-TiO2, nano-silicon dioxide (nano-SiO2), and 

nano-ZnO are produced at the highest levels globally (Vance, Kuiken et al. 2015). TiO2 and ZnO 

are used commonly as a pigment in foods, cosmetics, and coatings (Weir, Westerhoff et al. 2012, 

Peters, van Bemmel et al. 2014) and as a bactericide in food packaging (Chawengkijwanich and 

Hayata 2008, Espitia, Soares et al. 2012). Nano-SiO2 is used primarily in protective coatings and 

environmental treatment, but is also present in dietary supplements (Vance, Kuiken et al. 2015).  

Although humans are more likely to be exposed to metal oxide nanomaterials due to their 

presence in processed food items, some studies have suggested that they are also bioavailable to 

aquatic organisms, with the oral route as the most likely route of exposure (Johnston, Scown et 

al. 2010). 

                Despite the widespread presence of metal oxide nanomaterials in food items and the 

high likelihood of exposure through gastrointestinal association with these compounds, there are 

few studies reporting on their effects in the gut microbiome. Taylor et al. (Taylor, Marcus et al. 

2015) found significant phenotypic changes in the microbial community of a model colon after 

an exposure to environmentally relevant concentrations of three metal oxide nanomaterials 

(nano-TiO2, nano-ZnO, and nano-cerium dioxide), including changes in cellular hydrophobicity, 

cell-size, surface charge, and metabolism of the exposed microbiome communities. A similar 

study conducted by Waller et al. (Waller, Chen et al. 2017) using food-grade TiO2 (a mixture of 

nano-sized and bulk particles) observed phenotypic changes in the exposed microbial community 

comparable to those seen in Taylor et al. (Taylor, Marcus et al. 2015), but also reported a 

significant decrease in microbial cell concentration (58.6%) and a slight difference in protein 
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content of the extracellular polymeric substance, a matrix of high molecular-weight polymers 

essential for biofilm formation.  

In addition to in vitro effects, metal oxide nanomaterials can also impact the gut 

microbiome in vivo. In an in vivo study with zebrafish (Chen, Guo et al. 2018), co-exposure to 

nano-TiO2 and bisphenol A induced dysbiosis in the gut microbiome, and the nano-TiO2 

exposure was associated with a significant increase in the relative abundance of Firmicutes and 

Bacteroidetes compared to controls. Feng et al. (2017) observed changes in gut microbiome 

structure and metabolic profiles in hens exposed to high concentrations of nano-ZnO (>25 

mg/kg), with notable impact on microbiome diversity at the highest treatment concentration, the 

relative abundance of several bacterial groups (class Bacilli and phyla Fusobacteria, 

Proteobacteria, and Firmicutes), and metabolite levels (most notably were glucose, lactate, 

choline, and methionine) in treated hens compared to controls (Feng, Min et al. 2017). An in vivo 

study conducted in piglets found that low-levels of dietary nano-Zn impacted the diversity and 

richness of the gut microbiome, with location-specific alterations in the relative abundance of 

intestinal Firmicutes and Bacteroidetes (Xia, Lai et al. 2017). Overall, it seems that metal oxide 

nanomaterials have the potential to disrupt the host gut microbiome both in vitro and in vivo, but 

it remains unclear as to whether environmentally relevant amounts of these compounds may 

elicit microbiome-level effects in aquatic systems. 

6.1.3. Other Metal Nanomaterials and the Gut Microbiome 

Like metal oxide nanomaterials, metal nanomaterials are present in many commercially 

available products and are likely to be released into the environment. Silver nanoparticles (nano-

Ag) are the most abundant metal-based nanomaterial in commercial products (Vance, Kuiken et 
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al. 2015) and are utilized primarily for their antimicrobial properties (Rai, Yadav et al. 2009). 

According to the 2018 Consumer Products Inventory, these types of nanoparticles are present in 

textiles, water filters, food containers, and even certain domestic products such as dietary 

supplements and toothpaste (http://www.nanotechproject.org/cpi/). Although little is known 

about the environmental transport and fate of nano-Ag, research indicates that nano-Ag can leach 

from products and enter into aquatic environments (Benn and Westerhoff 2008), where silver 

ions and conjugates are formed rapidly. Recent models predict its presence in wastewater 

effluent in the low ppb range (Keller and Lazareva 2013). In addition to nano-Ag, copper 

nanomaterials (nano-Cu) present another potentially toxic metal-based nanomaterial group. 

Although not as widely used as nano-Ag, nano-Cu also displays antimicrobial properties and is 

found in low concentrations in the environment (Keller and Lazareva 2013). Mammalian studies 

investigating the potential impact of nano-Ag exposure on the gut microbiome report conflicting 

results. Some studies using rodents have found that oral exposure to nano-Ag was associated 

with an altered ratio between Firmicutes and Bacteroides phyla (Van Den Brûle, Ambroise et al. 

2015, Williams, Milner et al. 2015) and increased prevalence of bacteria in the family 

Enterobacteriaceae and genus Lactobacillus (Williams, Milner et al. 2015). Other mammalian 

studies have not seen the same results following nano-Ag exposure – for example, Wilding et al. 

(Wilding, Bassis et al. 2016) reported that nano-Ag exposure did not induce any changes in the 

gut microbiome of mice, and Hadrup et al. (Hadrup, Loeschner et al. 2012) reported no 

significant changes in the ratio between Firmicutes and Bacteroides in Wistar rats exposed to 

nano-Ag. As stated by Wilding et al. (Wilding, Bassis et al. 2016), the differences in 

observations reported by these in vivo studies may be due to differences in exposure duration, 

experimental design, and dosing. In any case, future work is required to answer the questions 
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presented by these conflicting studies. Although in vitro data is lacking, one in vitro study 

conducted by Das et al. (Das, McDonald et al. 2014) with a cultured human fecal microbial 

community found that nano-Ag exposure caused changes in microbial respiration, fatty acid 

profiles, and phylogenetic composition.  

Toxicity of nano-Ag to the gut microbiome has also been assessed in non-mammalian 

models. A study with Japanese quail (Sawosz, Binek et al. 2007) found that waterborne exposure 

to nano-Ag increased lactic acid-producing bacteria in the gut microbiome. Additionally, a study 

with zebrafish found that dietary exposure to nano-Cu and nano-Ag both impacted the diversity 

of the gut microbiome. Nano-Cu exposure induced the most significant changes, causing 

complete suppression of common gut bacterial species (namely C. somerae), while nano-Ag 

exposure induced only minor changes in bacterial diversity. A study with Drosophila 

melanogaster reported a significant reduction in the diversity of the gut microbiota of larvae 

exposed to nano-Ag, specifically an increase in Lactobacillus brevis and Acetobacter compared 

to control groups (Han, Geller et al. 2014). Surprisingly, nano-Cu treated experimental groups 

did not show the same changes in bacterial diversity as seen in the nano-Ag treatment groups, 

which indicates that the sensitivity to the nanomaterials may be host species-specific. 

6.1.4. Carbon Nanomaterials and the Gut Microbiome 

Carbon nanomaterials are an emerging class of nanomaterials consisting primarily of 

cylindrical single and multi-walled nanotubes and spherical fullerenes. Although currently not as 

widely produced as metal and metal oxide nanomaterials, their unique properties, coupled with 

their overtly low toxicity, has made them a major player in the nanomaterial industry (De 

Volder, Tawfick et al. 2013). Although detection and quantification of these materials are 
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difficult, recent models predict their environmental release and partitioning into surficial 

sediments (Schierz, Espinasse et al. 2014), where they may be potentially bioavailable to aquatic 

organisms. 

To date, there are few studies investigating the relationship between dietary exposure to 

carbon nanomaterials and dysbiosis of the gut microbiome. An in vitro study conducted with 

microbes common to the human gut microbiome (Lactobacillus acidophilus, Escherichia coli, 

Staphylococcus aureus, and Enterococcus fecalis) found that single and multi-walled carbon 

nanotubes have broad spectrum antibacterial effects through the lysis of bacterial cell walls and 

membranes (Chen, Wang et al. 2013). Another in vitro study conducted by Zhu et al. (2014) 

found decreased viability in E. coli, S. aureus, Bacillus subtilis, and Ochobactrum species after 

exposure to single-walled carbon nanotubes of varying lengths, along with changes in membrane 

fatty acid composition of S. aureus and B. subtilis (Zhu, Xia et al. 2014). Li et al. (2018) (Li, Lei 

et al. 2018) found that orally administered fullerenol nanoparticles caused marked changes in the 

structure and composition of the gut microbiota, with significant enrichment in bacterial groups 

involved in the production of short-chain fatty acids, such as Lactobacillus.  

Although this is a relatively new area of research, there is some evidence indicating that 

dietary exposure to carbon nanomaterials may induce changes in microbial groups involved in 

lipid synthesis and metabolism, and additional research is necessary to explore this possibility.  

6.2. Deepwater Horizon effects on fish microbiomes 

In the aftermath of the 2010 Deepwater Horizon oil spill, there were many reports 

demonstrating that the incursion of oil altered the microbial population spectrum of water and 



 
 

  
 A

cc
ep

te
d

 

 

 

 

 

 

 

 

 

  

 
 
 

  P
re

pr
in

t   
 

   

This article is protected by copyright. All rights reserved 

 

sediment significantly as a function of both time and distance from the oil release (Hazen, 

Dubinsky et al. 2010, Kostka, Prakash et al. 2011, Dubinsky, Conrad et al. 2013, Gutierrez, 

Singleton et al. 2013, Looper, Cotto et al. 2013, Mason, Scott et al. 2014).  However, there was 

relatively little research aimed at understanding the effects of oil contamination on the 

microbiomes of fish species in the affected area (Barron 2012, Whitehead, Dubansky et al. 2012, 

Barron, Hemmer et al. 2013, Brewton, Fulford et al. 2013, Brown-Peterson, Krasnec et al. 2017).  

This was somewhat surprising, given that there is increasing evidence that exogenous factors can 

have significant effects on the microbiome of organisms (Carlson, Hyde et al. 2015, Gaulke, 

Barton et al. 2016). Microbiota shifts due to contaminants can have detrimental impacts on the 

health status of the host (Lefever, Xu et al. 2016, Jin, Wu et al. 2017) and immune function 

(Kelly and Salinas 2017), thus it is important to characterize more completely the long term 

health consequences that are related to changes in the microbiome.  

Following published reports of bacteria-induced lesions in red snapper (Lutjanus 

campechanus) following the Deepwater Horizon oil spill  (Murawski, Hogarth et al. 2014), 

researchers examined the microbiome of wild-caught snapper from opportunist cruises off the 

Louisiana coast (Arias, Koenders et al. 2013).  Using culture-based techniques, the researchers 

identified 179 isolates from skin and 43 species isolated from mucus from 60 individual fish. The 

researchers examined the prevalence of two fish pathogens, Vibrio vulnificus and Photobacteria 

damselae in red snapper populations. The genera Vibrio and Photobacterium were both highly 

represented in the samples, contributing 32% and 23% respectively, of the total number of 

isolates. The authors interpreted these results to indicate that these taxa are normally present in 

red snapper, and because none of the caught fish exhibited signs of poor health, were unlikely to 
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be directly responsible for any observed lesions in other individuals. However, it is important to 

note that in this study, no independent markers of health were reported, and the fish were caught 

in an area that was also potentially affected by oil from Deepwater Horizon, meaning that 

linkages between skin microbiomes, health status, and oil exposure were difficult to draw with 

any firm conclusions. 

A second study by the same group later examined the effects of oil and season on the skin 

microbiome of Fundulus grandis collected from oiled and non-oiled marsh sites in Barataria 

Bay, LA in 2011.  Here, using Ribosomal Intergenetic Spacer Analysis (RISA), Larsen et al., 

(2015) (Larsen, Bullard et al. 2015) showed no evidence of difference in skin microbial 

populations on fish collected in oiled and non-oiled sites.  The skin microbiome was different 

from the water microbiome, providing evidence that skin microbial populations are not simply 

reflections of bacteria in the water column.  However, shifts in microbial composition were 

observed across seasons, indicating that there are external stimuli that can affect the skin 

microbiome of F. grandis that is not chemical-specific.  The lack of evidence of shifts associated 

with oiled vs. non-oiled sites was surprising, although it should be noted that no independent 

assessment of PAH contamination in the selected sites was presented.  However, it is possible 

that either historical or transient oil exposure were affecting the results. 

More recently, two controlled laboratory experiments have attempted to examine the 

effect on oil-contaminated sediment exposure on the gill and intestinal microbiomes of juvenile 

southern flounder (Paralichthys lethostigma). Initially, juvenile southern flounder were exposed 

to oil-contaminated sediment for 30 days under flow-through conditions, and microbiomes of gill 

and intestine analyzed by 16S sequencing (Brown-Peterson, Krasnec et al. 2015).  Here, the 
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researchers observed significant shifts in population structures for lower gill, upper gill, and 

intestine.  In general, the lower gill was most strongly affected among tissues, while the top gill 

and intestine were less impacted by oil exposure.  Of particular interest here was that there was a 

strong increase in the prevalence of the hydrocarbon degrading bacteria genus Alcanivorax in 

flounder exposed to oil-contaminated sediment, demonstrating that the microbiome-host 

interaction “responds” in some way to chemical stressors. It is unclear if this response is an 

adaptive response of the host to the oil or whether the bacterial communities are outcompeting 

other residence in an oil-rich environment. 

In a follow up study Bayha et al. (2017) (Bayha, Ortell et al. 2017) extended this to 

examine the effect of oil-induced microbiome shifts on disease resistance in southern flounder.  

Flounder were exposed to control or contaminated sediments for 4 days, and then were 

challenged with a known fish pathogenic bacterium, Vibrio anguillarum, and followed for 

several days.  At 24 hours after the bacterial challenge, there was again a significant difference in 

the microbiome of the different organs.  Most noticeably, the flounder that were exposed to oil 

had a significant increase in the prevalence of the hydrocarbon-degrading bacteria Alcanivorax, 

and there was a significant difference in the ability of the fish pathogen V. anguillarum to 

colonize the gills of challenged fish.   In fish that were exposed to oil contaminated sediments 

prior to the bacterial challenge V. anguillarum was able to colonize the gills, while in the fish 

that were placed on uncontaminated sediment prior to the challenge the fish were able to defend 

against the pathogen.  This effect was linked to an oil-induced down-regulation in the expression 

of the immune gene Immunoglobulin M, implying that there is a strong linkage between oil 

exposure, organ-specific microbiomes, and health outcomes.   
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This conclusion is particularly interesting in light of what is known from the biomedical 

research community about interactions between the AhR receptor and intestinal microbiome. 

There is intriguing data that there is a functional linkage between intestinal microbiota, the AhR, 

and host health (Zhang, Nichols et al. 2017). For example, several AhR ligands or agonists, 

including tryptophan metabolites, are produced by intestinal microbiota, which have been shown 

to affect the AhR-Il22 axis (Zelante, Iannitti et al. 2013). This raises the interesting possibility 

that environmental exposure to hydrocarbons, such as oil from the Deepwater Horizon incident, 

may be affecting exposed organisms via specific mechanisms that are mediated by specific 

signaling mechanisms. In addition to the direct exposure effects, which are becoming more clear 

and well-characterized, the contaminants may be causing indirect effects, through altering the 

activity of the AhR pathway.   

The hypothesis that some chemicals can exert effects on the microbiome via AhR 

signaling is supported by studies in rodent models. Murray et al. (2016) (Murray, Nichols et al. 

2016) showed that AhR-/- mice have different microbiomes than those that are AhR 

heterozygotes. In this experiment, mixed genotype littermates were co-housed for 6 months, then 

separated by genotype and maintained under identical conditions for 18 days. Following this 

segregation, 16S sequence data indicated a modest but significant shift in the bacterial diversity 

in the caecum of the different genotypes. Most noticeably, AhR -/- mice had an increase in the 

prevalence of segmented filamentous bacteria in the caecum. Inferred metabolic pathway 

analysis also indicated different microbial populations were present in the two genotypes, as did 

the different metabolic profiles produced.  In another study, AhR -/- and AhR heterozygote mice 

were exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF, 24 ug/kg dietary exposure for 5 days) 
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and the effect on the intestinal microbiome and metabolism were investigated (Zhang, Nichols et 

al. 2015). The study showed that dietary TCDF shifted the ratio of Firmicutes to Bacteroidetes 

and triggered gut inflammation, presumably due to the activation of bacterial fermentation, 

suggesting that these events are AhR-mediated. In addition, PCA analysis showed that in AhR 

heterozygotes exposure to TCDF produces a dramatic and significant shift in total microbiome 

population, while no such difference was apparent in AhR -/- mice. Exposure to TCDF also 

induced a significant decrease in the presence of segmented filamentous bacteria and a 

significant increase in expression of IL-1b, TNF, and Lcn-2 in the ileum, while in the AhR -/- 

mice this effect was abolished.  Similarly, TCDF-driven reductions in certain bile salts (Fgf15, 

Fxr, and Shp) that were present in AhR heterozygotes were non-significant in AhR -/- mice. 

Taken together, these papers provide strong indicates that the AhR ligand pathway is closely 

linked with intestinal microbiomes and should be further examined. While this linkage has only 

so far been demonstrated in mice, the fact that other researchers have shown that oil can cause 

severe effects on the microbiome of exposed fish implies that the interaction of oil exposure, 

microbiome shifts, and AhR-linked pathways is likely to be a fruitful future avenue of research.   

7.  Adverse outcome pathways and the microbiome 

In Figure 3, we present a framework for incorporating the gut microbiome into an 

adverse outcome pathway (AOP). An oral route of exposure is perhaps the most relevant when 

linking gut dysbiosis and chemicals, as aquatic organisms are exposed to environmental 

chemicals through the water and food. Water-soluble chemicals or those adhered to food 

particles can be ingested into the gut, where these chemicals can interact with gut epithelial 

receptors before or after microbial transformation. For example, there are a number of pesticides 
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that act on estrogen receptors to elicit estrogenic responses in tissues (Seeger, Klawonn et al. 

2016), including in the gut. Indeed, the mammalian gastrointestinal system expresses a vast 

repertoire of receptors for environmental chemicals and endocrine disruptors.  A specific 

example includes the ingestion of polycyclic aromatic hydrocarbons bound to food which 

activates AhR in the GI tract. There can also be active uptake of the chemical via endocytosis-

mediated events or passive transport of the chemical through the gut epithelium (not depicted in 

the figure but one process that can also act as molecular initiating event, or MIEs). These events 

can occur with the parent compound, or they can occur following bio-activation or 

biotransformation by the gut microbiome; this process can be a significant mechanism prior to a 

MIE at the host-chemical interface [78]. Lastly there is the possibility that the chemical also 

binds microbial enzymes directly, leading to secondary changes in their metabolic outputs. 

Following the MIE, the host epithelium is expected to respond on a cellular level in a 

unique way to each specific chemical, which may include the activation of immune responses 

due to localized chemical-induced cell damage.  Activated inflammatory response can include 

stimulation of cytokines, interleukins, and other inflammatory pathways as immune cells 

infiltrate the gut epithelium to mitigate the damage. It is important to recognize that the 

responses between microbiome and host are dynamic, complex, and reciprocal. Activation of 

cellular responses (e.g. immune or stress response) in gut epithelial cells can have profound 

effects on the microbiome; microbial diversity and species richness is also expected to be 

modulated by post-inflammatory and protective mechanisms in the gut epithelium. Altered 

microbial diversity and richness can lead to changes in the microbial metabolites produced 

within the GI tract, and this in turn can have direct consequences for the host, causing 
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exacerbated inflammation, impaired nutrient uptake, gut leakiness, and eventually programmed 

cell death and necrosis. Mechanisms underlying these events can include transcriptional and 

protein regulation of molecules needed for epithelial protection, cell cycle, and DNA repair or 

specific xenobiotic pathways for the chemical.  

As these events coalesce, gut dysbiosis is exacerbated and can induce systemic effects 

within the organism. Poor nutrition and impaired metabolism can ensue as inflammation in the 

gut impairs transporter-mediated uptake of nutrients and vitamins. Microbial metabolites 

considered to be damaging to the organism may enter into the in the circulatory system of the 

host, affecting multiple organs within the organism (Blacher, Levy et al. 2017). Poor overall 

health of the organism can lead to population-level effects that may include increased 

susceptibility to infection, decreased growth, and decreased survival.  This general framework 

for Adverse Outcome Pathways related to chemical-induced gut dysbiosis can be included into 

larger frameworks that integrate quantitative AOPs.  We also point out that this framework is not 

comprehensive, as there are likely a number of MIEs and key events that remain undefined; these 

MIEs will be dependent upon the chemical ingested.  

8. What’s next? Demonstrating the link between microbial shifts and toxicants 

Research continues to address questions about how exogenous contaminants affect the 

microbiome of organisms and whether the altered microbiome affects the health status of the 

fish. However, it becomes increasingly important to discern which microbial species are 

contributing directly to the gut dysbiosis and any health related issues. Strategies have been 

developed to determine the cause and effect relationship between specific microbiome changes 

and gut inflammation.  Culturomics has been proposed as a high throughput method to isolate 
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and identify specific microbial communities, allowing for further in vitro investigation into 

effects or interactions with the host immune system (Tidjani Alou, Million et al. 2017). The idea 

is to leverage different culture media and conditions (i.e. temperature, nutrients, oxygen) to 

isolate a wide variety of microbial species from fecal matter in order to perform functional 

assays (e.g. activation assays with Toll-like receptors).  This approach of course is only possible 

with those bacteria that can be cultured successfully outside of the gut.  A second strategy is to 

use functional genomics, leveraging expression QTL and data on single nucleotide 

polymorphisms to define microbial-host interactions (Luca, Kupfer et al. 2017).  In this 

approach, genome-wide association studies have correlated microbial variability to human 

disease phenotypes.  Moreover, efforts move towards “a gut on a chip” in humans, which can be 

potentially developed for aquatic organisms and used to examine microbial-host interactions.  A 

third strategy includes probiotic manipulation or fecal transplant experiments, resulting in 

reduction/overexpression of sensitive microbial communities associated with an adverse 

outcome. Lastly, developing a diversity of gnotobiotic animals to understand the role of their 

microbial communities in health will also be an exciting step forward. 

These experimental strategies can be employed to test hypotheses that specific microbial 

species are associated to an adverse outcome.  Within the context of toxicology, the final step 

would be to demonstrate an association between the chemical exposure and the proliferation, 

survivability, or functional output (metabolites) of a targeted microbial species. One of the key 

challenges is that, when manipulating the microbiome, it is expected that one will also alter 

physiology of the host organism.  Thus, determining the contribution of the altered microbiome 
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versus host from the effects of the “agent that altered the microbiome” is a non-trivial challenge 

that requires innovative ways to differentiate.    

9. Concluding Remarks and Future Perspectives 

Research has now established that the microbiome is an integrated component of wildlife 

and human health.  Studies that examine the microbiome in the context of aquatic toxicology are 

increasing at a rapid rate, and there are unique challenges for toxicology when it comes to 

understanding the role of the microbiome in environmental and animal health.  Major questions 

to be addressed moving forward include the following: 

(1) What microbiome communities exist in aquatic organisms – do species in the same 

geographical region have more similar microbiomes compared to close evolutionary relatives 

living in different habitats? 

(2) What are the molecular mechanisms by which host genetic variation affects microbiome 

composition? 

(3) What is the capacity of the microbiome to transform environmental pollutants? Can aquatic 

species use their microbiome to adapt to contaminated environments? 

(4) How do environmental factors that include climate change and acidification affect 

microbiomes and the balance between host-microbe? 

(5) How are microbial communities shaped in long migrant species, for example those species 

that seek specialized habitats for reproduction?  How do microbiomes drive development? 

(6) How does dose, diet, and individual genetic variability influence the microbiota? 
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Addressing these questions are expected to spur exciting research in the future. We have learned 

that aquatic organisms have diverse and complex microbiomes that can often differ from species 

to species. Elucidating the role of the microbial phenotype in adaption to polluted habitats will be 

a significant advance for understanding how aquatic organisms interact with their environment.  
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Figure Captions 

Figure 1. Addressing questions related to the microbiome.  

Figure 2. Diagram of the different interactions the gut microbiome can have with the host 

gastrointestinal system. The gut is colonized by trillions of microbes that aid in digestion, 

modulate immune responses, and generate a variety of beneficial biological products through 

metabolic activities. Microbial metabolites are sensed by the host, and can thus play a key role in 

microbiome-host interactions. Most studied microbial metabolites include microbial conversion 

of choline and L-carnitine to trimethylamine, microbial fermentation of dietary carbohydrates to 

generate short-chain fatty acids (SCFAs), and microbial conversion of primary bile acid to 

secondary bile acids. 

Figure 3. Proposed outcome framework for chemicals that affect the microbiome. Ingested 

chemicals can be bio-transformed by the microbiome or act directly on the host epithelium to 

exert adverse effects in the host. 
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Table 1: Examples of some of the most abundant genera in the fish gut that are affected by chemicals and environmental contaminants. The effect of 

chemical on the microbiota is provided (plus sign indicates increased presence in the gut while negative sign indicates decreased presence of the 

organism in the gut following chemical treatment). The functional significance of the group is also indicated based on manual compilation of 

information from literature. PAH = polycyclic aromatic hydrocarbon. The phylum and its functional significance for CK-1C4- 19 and the functional 

significance of CKC4 is unknown as it has not been extensively studied. To the best of our knowledge, functional data are also lacking for 

Pseudoaltermonas and Alistipes. 
 

Fish Species Chemical: 

description 

Groups discussed in 

paper 

 Effect of   

 Chemical   

 on Group 

Functional Significance 

(Group) 

Phyla Functional significance 

(Phyla) 

Citation 

Southern 

Flounder 

(Paralichthys 

lethostigma) 

PAHs: 

  

Environmental 

pollutants produced 

from partial 

combustion of 

organic material. 

Clostridia - Often pathogenic Firmicutes Carbohydrate metabolism [1] 

Owenweeksia  

Hongkongensis (species) 

- Metabolizes carbohydrates, 

amino acids, and lipids.  

Sulphur and nitrogen 

metabolism 

Bacteroidetes 

 

Degrade high molecular weight 

organic matter like protein, 

polysaccharides, and 

carbohydrates. 

Sphingobacteria (genus) + Pathogenic on rare occasions 

Alphaproteobacteria 

(class) 

- Pathogenic, fix nitrogen Proteobacteria 

 

Pathogenic, nitrogen fixation  

Gammaproteobacteria 

(class) 

+ Pathogenic, methane oxidation, 

CO2 fixation trough 

photosynthesis 

Deltaproteobacteria (class) + Sulfur reducing 

Epsilonproteobacteria + Possible pathogen 

Oceanospirillales (order) + n-alkane and cycloalkane 

degradation 

Alcanivorax (genus) + Alkane degradation 

Arcobacter (genus), + Rarely pathogenic, sulphur 

oxidation 

Donghicola (Genus) + Present in seawater 

Rhodovacteraceae (Family) + Sulfur and carbon 

biogeochemical cycling 

Pseudoaltermonas + --------- 

Nile tilapia 

(Oreochromis 

niloticus) 

 

 

 

Cadmium:  

 

A metal that is a 

silver-white color in 

its’ elemental state. 

Cadmium is 

Bacteroidetes (phylum) + See functional significance of 

phyla. 

Bacteroidetes Degrade high molecular weight 

organic matter like protein, 

polysaccharides, and 

carbohydrates. 

[2] 

 

 

 

 

 

Flavobacterium (genus) + Pathogenic, degrades 

macromolecules 
Fusobacteria (phylum) - See functional significance of 

phyla. 

Fusobacteria Pathogenic 
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carcinogenic and 

mostly a by-product 

of zinc mining and 

smelting. 

Cetobacterium (genus) - Produce vitamin B12  

 

 

 

 

Plesiomonas (genus) - Fermentation of lactose Proteobacteria Pathogenic, nitrogen fixation 

 Deefgea (genus) - Facultative anaerobe 

Pseudomonas (genus) + Diverse, often pathogenic 

Cellvibrio (genus) + plant polysaccharide degradation 
Acinetobacter (genus)    + Pathogenic, bioremediation 

Zebrafish (Danio 

rerio) 

Oxytetracycline 

And 

Sulfamethoxazole: 

 

-both compounds 

used as antibiotics 

Proteobacteria (phylum) - See functional significance of 

phyla. 

Proteobacteria 

  

Pathogenic, some groups fix 

nitrogen 

[3] 

Planctomycetes (phylum) - See functional significance of 

phyla. 

Planctomycetes  Oxidize ammonia to dinitrogen 

without oxygen 

Fusobacteria (phylum) + See functional significance of 

phyla. 

Fusobacteria Pathogenic 

Bacteroidetes (phylum) - See functional significance of 

phyla. 

Bacteroidetes Degrade high molecular weight 

organic matter like protein, 

polysaccharides, and 

carbohydrates. 

CKC4 (phylum) + -- CKC4 -- 

Fathead minnows 

(Pimephales 

promelas) 

Triclosan: 

 

Chemical often 

used as an 

antibiotic/ 

antimicrobial 

CK-1C4- 19 + -- -- -- [4] 

Hydrogenophaga (genus) + Hydrogen oxidation Proteobacteria Pathogenic, some groups fix 

nitrogen Thauera (genus) + Degradation of aromatic 

compounds 

Methylobacterium (genus) + Pathogenic, synthesize 

carotenoids 

Acidovorax (genus) + Pathogenic 

Zebrafish (Danio 

rerio) 

Silver nano 

particles: 

 

Small particles of 

silver possessing 

antimicrobial 

properties. 

Cetobacterium somerae  

(species) 

- Produces vitamin B12 Fusobacteria Can be pathogenic, some species 

produces vitamin B12 

[5] 

Zebrafish (Danio 

rerio) 

Imazalil: 

 

Fungicide used to 

keep plants/ crops 

fungus free. 

Bacteroides (genus) - Pathogenic Bacteroidetes Degrade high molecular weight 

organic matter like protein, 

polysaccharides, and 

carbohydrates. 

[6] 

Alistipes (genus) - --------- 

Rhodobacter (genus)  - anoxygenic photosynthesis and 
carbon/ nitrogen fixation 

Proteobacteria Pathogenic, some groups fix 

nitrogen 

Akkermansia (genus) 

 

- -degrades mucous  Verrucomicrobia Some species oxidize methane 
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