2,050 research outputs found

    Theoretical investigation of a miniature microwave driven plasma jet

    Get PDF
    Microwave and radio frequency driven plasmas jets play an important role in many technical applications. They are usually operated in a capacitive mode known as E-mode. As a new plasma source the MMWICP (Miniature Micro Wave ICP) has been proposed, a small scale plasma jet with inductive coupling based on a specially designed resonator that acts as an LC-resonance circuit. This work presents a theoretical model of the new device, based on a series representation of the electromagnetic field in the resonator and the volume integrated (global) model for the loss processes within the plasma. An infinite number of modes can be found ordered by the azimuthal wave number m. These modes essentially determine the electromagnetic behavior of the system and differ from ordinary cavity modes. The mode m=0 can be identified with the inductive mode and is called H-mode, the mode m=1 is the capacitive mode and is called E-mode. Both modes refer to different operating regimes, which are separated by different values of the plasma parameters. In a second step the matching network and its characteristics are taken into account in order to find stable equilibrium points and possible hysteresis effects. As main result, the feasibility of inductive power coupling for the MMWICP resonator is shown

    Modelling of a miniature microwave driven nitrogen plasma jet and comparison to measurements

    Get PDF
    The MMWICP (miniature microwave ICP) is a new plasma source using the induction principle. Recently Klute et al presented a mathematical model for the electromagnetic fields and power balance of the new device. In this work the electromagnetic model is coupled with a global chemistry model for nitrogen, based on the chemical reaction set of Thorsteinsson and Gudmundsson and customized for the geometry of the MMWICP. The combined model delivers a quantitative description for a non-thermal plasma at a pressure of p = 1000 Pa and a gas temperature of Tg = 650–1600 K. Comparison with published experimental data shows a good agreement for the volume averaged plasma parameters at high power, for the spatial distribution of the discharge and for the microwave measurements. Furthermore, the balance of capacitive and inductive coupling in the absorbed power is analyzed. This leads to the interpretation of the discharge regime at an electron density of ne ≈ 6.4 × 1018 m−3 as E/H-hybridmode with an capacitive and inductive component

    Inductively Coupled Plasma at Atmospheric Pressure, a Challenge for Miniature Devices

    Get PDF
    Inductively coupled plasma (ICP) sources are preferred to the capacitive (CCP) sources because of their higher electron density and plasma purity. The use of microwaves for the plasma excitation allows not only to obtain a dense plasma with a low gas temperature but also to generate such a plasma at higher pressures. We present a miniaturized device capable of working up to atmospheric pressure. The plasma is generated in a quartz tube with an outer diameter of 7 – 12 mm. The microwave plasma interaction has been studied using an original method, the “Hot-S-Parameter” spectroscopy, presented in detail in [1]. The variation of the resonance frequency and generally of the reflected power as a function of frequency provides information about the type of coupling and about the plasma conductivity, i.e., electron density and scattering frequency. The microwave data are correlated with photographs of the plasma shape and with results of the optical emission spectroscopy (OES) of nitrogen [2]. At 1000 Pa, and 80 W at 2.45 GHz, a nitrogen plasma reaches an electron density of 3 1019 m−3 and a gas temperature of 1600 K [2]. The miniaturized source includes an impedance matching circuit. Based on microwave and optical measurements we estimate the power absorbed by the plasma at 1000 Pa to be about 60 % of the incident power. This efficiency is much higher than in standard reactors driven at 13.56 MHz. The source has been successfully tested with argon at atmospheric pressure. This fact opens new perspectives for the use as an array of remote plasma sources for thin-film depositions

    Power Consumption in a Miniature Microwave Inductively Coupled Plasma Source

    Get PDF
    Miniature Microwave Inductively Coupled Plasma (MMWICP) source is a novel and versatile non-thermal plasma source, which profit of high electron density and high power efficiency. In its compact version a single MMWICP source comprises a quartz tube of 5 mm inner diameter enclosed by a copper resonator of 8 mm thickness. This basic unit can be combined in an array of two (double), four (Quadriga) or more sources. Here, the single source is characterized by Optical Emission Spectroscopy (OES). A continuous stream of nitrogen gas is running through the glass cylinder at a pressure of 2000 Pa. This specific pressure is chosen to satisfy the Local Field Approximation (LFA), which is used in the latter data analysis. For the OES measurements nitrogen as a test gas is selected for its well-known population kinetics. In particularly, the second positive system of neutral nitrogen (380 nm line) and first positive system of nitrogen molecular ion (391 nm) are monitored, for which the population kinetics can be described by a simple collision radiative model. The OES measuring unit consists of a macro objective, CCD camera and two narrow band-pass filters, which isolate the corresponding emission lines. With previously absolutely calibrated OES unit, the radially resolved absolute line intensities are collected with a 28 micrometer resolution. Simultaneously, an absolutely calibrated high resolution Echelle spectrometer monitors the rotational lines distribution form respective emissions. Using the rate equations of collision-radiative model and BOLSIG+ for solving a Boltzmann equation under the assumption of LFA, it is possible to measure the spatially resolved electron density and electric field. Moreover, the spatially resolved deposited power density is calculated. In the presentation we will discussed the power dissipation in CCP, ICP and hybrid mode of operation. In respect to power efficiency MMWICP will be compared to other microwave plasma sources

    Theoretical investigation of a novel microwave driven ICP plasma jet

    Get PDF
    Theoretical investigation of a novel microwave driven ICP plasma jet 26 Jun 2019, 16:15 15m Gold Coast III/IV (Double Tree at the Entrance to Universal Orlando) Oral 2.7 Microwave Plasma Interaction 2.7 Microwave Plasma Interaction III Speaker Mr Michael Klute (Ruhr University) Description Microwave and radio frequency driven plasmas-jets play an important role in many technical applications. They are usually operated in a capacitive mode known as E-mode. This mode, however, couples considerable power to ions which limits the plasma density and the efficiency and gives rise to negative side effects such as erosion. The inductive coupling, known as H-mode, eliminates these disadvantages and is attractive for large scale plasmas. A novel small scale, microwave driven plasma-jet has been proposed by \textit{Porteanu et al.}[1]. It is operated as an inductive discharge and that has been recently characterized using optical emission spectroscopy (OES) by \textit{Stefanovic et al.}[2]. In this work the proposed plasma-jet is examined theoretically. A global model of the new device is presented based on the volume-integrated balances of particle number and electron density, and a series representation of the electromagnetic field in the resonator. An infinite number of modes can be found ordered by the azimuthal wave number m. The mode m=0 can be identified with the inductive mode and will be called H-mode, the mode m=1 is the capacitive mode and will be called E-mode. By equating the electromagnetic power that is absorbed by the plasma with the loss power, stable operating points and hysteresis effects can be investigated. In a second step the spatially resolved electromagnetic field strength will be considered. All results will be compared to the results of the OES measurements and imagines obtained from CCD-imaging. [1]Porteanu et al.\textit{Plasma Sources Sci.Technol.}\textbf{22}, 035016 (2013) [2] Stefanovic et al.\textit{Plasma Sources Sci.Technol.}\textbf{27}, 12LT01 (2018) [3] Porteanu et al.\textit{Plasma Sources Sci.Technol.} accepted (2019

    3-dimensional semi-analytic model of a microwave driven miniature plasma jet

    Get PDF
    Microwave or Radio frequency driven plasma jets play an important role in various technical applications and are usually operated in a capacitive mode. The MiniatureMicroWaveICP (MMWICP) is a new promising plasma source and successfully transfers the induction principle to a miniature plasma jet. This work presents a 3-dimensional semi-analytic model of the electron density of the MMWICP. The model is based on a drift-diffusion equation which is coupled to the electromagnetic model of the MMWICP presented by Klute et al in Plasma Sources Sci. Technol. 29 065018 (2020). An analytic solution is found by expanding the expression of the electron density into a series of eigenfunctions. The 3-dimensional profile of the electron density is simulated for characteristic values of the power absorbed by the plasma. The results show that the spatial distribution of the electron density is highly depended on the absorbed power. The results are found to be in good agreement with experimental measurements.74th Annual Gaseous Electronics Conferenc

    Focus topics for the ECFA study on Higgs / Top / EW factories

    Full text link
    In order to stimulate new engagement and trigger some concrete studies in areas where further work would be beneficial towards fully understanding the physics potential of an e+ee^+e^- Higgs / Top / Electroweak factory, we propose to define a set of focus topics. The general reasoning and the proposed topics are described in this document.Comment: v3: fixed spelling of two author

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore