42 research outputs found

    Evidence that hematopoietic stem cell function is preserved during aging in long-lived S6K1 mutant mice

    Get PDF
    The mechanistic target of rapamycin (mTOR) signalling pathway plays a highly conserved role in aging; mice lacking ribosomal protein S6 kinase 1 (S6K1-/-) have extended lifespan and healthspan relative to wild type (WT) controls. Exactly how reduced mTOR signalling induces such effects is unclear, although preservation of stem cell function may be important. We show, using gene expression analyses, that there was a reduction in expression of cell cycle genes in young (12 week) and aged (80 week) S6K1-/- BM-derived c-Kit+ cells when compared to age-matched WT mice, suggesting that these cells are more quiescent in S6K1-/- mice. In addition, we investigated hematopoietic stem cell (HSC) frequency and function in young and aged S6K1-/- and WT mice. Young, but not aged, S6K1-/- mice had more LSK (lineage-, c-Kit+, Sca-1+) cells (% of bone marrow (BM)), including the most primitive long-term repopulating HSC (LT-HSC) relative to WT controls. Donor-derived engraftment of LT-HSCs in recipient mice was unaffected by genotype in young mice, but was enhanced in transplants using LT-HSCs derived from aged S6K1-/- mice. Our results are the first to provide evidence that age-associated HSC functional decline is ameliorated in a long-lived mTOR mutant mouse

    A Deletion in the Canine POMC Gene Is Associated with Weight and Appetite in Obesity-Prone Labrador Retriever Dogs.

    Get PDF
    Sequencing of candidate genes for obesity in Labrador retriever dogs identified a 14 bp deletion in pro-opiomelanocortin (POMC) with an allele frequency of 12%. The deletion disrupts the β-MSH and β-endorphin coding sequences and is associated with body weight (per allele effect of 0.33 SD), adiposity, and greater food motivation. Among other dog breeds, the deletion was only found in the closely related flat-coat retriever (FCR), where it is similarly associated with body weight and food motivation. The mutation is significantly more common in Labrador retrievers selected to become assistance dogs than pets. In conclusion, the deletion in POMC is a significant modifier of weight and appetite in Labrador retrievers and FCRs and may influence other behavioral traits.We are grateful to Rachel Moxon of Guide Dogs UK for collecting the assistance dog samples; Stephen J Sharp of the MRC Epidemiology Unit for his statistical advice; Jens Häggström, Karin Hultin Jäderlund and Berndt Klingeborn for the Swedish dog samples; Anne White for efforts to develop a canine beta MSH assay and adaptation of her original for figure 1b; and the Dogslife Consortium for samples from British Labrador retrievers (supported by an Institute Core Strategic Grant from the BBSRC to the Roslin Institute). A full list of the investigators who contributed to the Dogslife project is available from www.dogslife.ac.uk/who-runs-dogslife. AJG's academic post at the University of Liverpool is financially supported by Royal Canin. The work was primarily supported by the Wellcome Trust (Senior Investigator Award 095515/Z/11/Z and Strategic Award 100574/Z/12/Z), MRC (MRC Metabolic Diseases Unit, award 4050281695 and MRC_MC_UU_12012/5), and Dogs Trust. The authors would like to thank all the veterinary surgeons and nurses, owners and dogs who contributed samples.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.cmet.2016.04.01

    Extrahypothalamic GABAergic nociceptin-expressing neurons regulate AgRP neuron activity to control feeding behavior

    Full text link
    Arcuate nucleus agouti-related peptide (AgRP) neurons play a central role in feeding and are under complex regulation by both homeostatic hormonal and nutrient signals and hypothalamic neuronal pathways. Feeding may also be influenced by environmental cues, sensory inputs and other behaviors implying the involvement of higher brain regions. However, whether such pathways modulate feeding through direct synaptic control of AgRP neuron activity is unknown. Here we show that nociceptin-expressing neurons in the anterior bed nuclei of the stria terminalis (aBNST) make direct GABAergic inputs onto AgRP neurons. We found that activation of these neurons inhibited AgRP neurons and feeding. Activity of these neurons increased upon food availability and their ablation resulted in obesity. Furthermore, these neurons received afferent inputs from a range of upstream brain regions as well as hypothalamic nuclei. Therefore, aBNST nociceptin/GABAergic neurons may act as a gateway to feeding behavior by connecting AgRP neurons to both homeostatic and non-homeostatic neuronal inputs

    Protein restriction during pregnancy alters Cdkn1c silencing, dopamine circuitry and offspring behaviour without changing expression of key neuronal marker genes

    Get PDF
    We tracked the consequences of in utero protein restriction in mice throughout their development and life course using a luciferase-based allelic reporter of imprinted Cdkn1c. Exposure to gestational low-protein diet (LPD) results in the inappropriate expression of paternally inherited Cdkn1c in the brains of embryonic and juvenile mice. These animals were characterised by a developmental delay in motor skills, and by behavioural alterations indicative of reduced anxiety. Exposure to LPD in utero resulted in significantly more tyrosine hydroxylase positive (dopaminergic) neurons in the midbrain of adult offspring as compared to age-matched, control-diet equivalents. Positron emission tomography (PET) imaging revealed an increase in striatal dopamine synthesis capacity in LPD-exposed offspring, where elevated levels of dopamine correlated with an enhanced sensitivity to cocaine. These data highlight a profound sensitivity of the developing epigenome to gestational protein restriction. Our data also suggest that loss of Cdkn1c imprinting and p57KIP2 upregulation alters the cellular composition of the developing midbrain, compromises dopamine circuitry, and thereby provokes behavioural abnormalities in early postnatal life. Molecular analyses showed that despite this phenotype, exposure to LPD solely during pregnancy did not significantly change the expression of key neuronal- or dopamine-associated marker genes in adult offspring

    Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice

    Get PDF
    As impaired insulin signalling (IIS) is a risk factor for Alzheimer's disease we crossed mice (Tg2576) over-expressing human amyloid precursor protein (APP), with insulin receptor substrate 2 null (Irs2(-/-)) mice which develop insulin resistance. The resulting Tg2576/Irs2(-/-) animals had increased tau phosphorylation but a paradoxical amelioration of Abeta pathology. An increase of the Abeta binding protein transthyretin suggests that increased clearance of Abeta underlies the reduction in plaques. Increased tau phosphorylation correlated with reduced tau-phosphatase PP2A, despite an inhibition of the tau-kinase glycogen synthase kinase-3. Our findings demonstrate that disruption of IIS in Tg2576 mice has divergent effects on pathological processes-a reduction in aggregated Abeta but an increase in tau phosphorylation. However, as these effects are accompanied by improvement in behavioural deficits, our findings suggest a novel protective effect of disrupting IRS2 signalling in AD which may be a useful therapeutic strategy for this condition

    Corporate governance and strategic human resource management:four archetypes and proposals for a new approach to corporate sustainability

    Get PDF
    In this paper we develop a new typology connecting strategic human resource management (SHRM) to different models of firm-level corporate governance. By asking questions concerning ownership and control issues in the corporate governance literature and drawing on institutional logics, we build a typological framework that identifies four firm-level archetypes of corporate governance systems. Two archetypes represent dominant logic types (shareholder value, communitarian stakeholder), while the other two represent hybrid organizations (enlightened shareholder value, employee-ownership). Using these archetypes, we theorize the implications of different governance structures for SHRM and the challenges they pose. We conclude by discussing a novel solution to many of these challenges based on the corporate sustainability literature, and, in so doing, provide new directions for SHRM research to tackle key challenges facing organizations and the management of people

    Brain Deletion of Insulin Receptor Substrate 2 Disrupts Hippocampal Synaptic Plasticity and Metaplasticity

    Get PDF
    Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2)

    Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease

    Get PDF
    Genetic association studies have identified 215 risk loci for inflammatory bowel disease, thereby uncovering fundamental aspects of its molecular biology. We performed a genome-wide association study of 25,305 individuals and conducted a meta-analysis with published summary statistics, yielding a total sample size of 59,957 subjects. We identified 25 new susceptibility loci, 3 of which contain integrin genes that encode proteins in pathways that have been identified as important therapeutic targets in inflammatory bowel disease. The associated variants are correlated with expression changes in response to immune stimulus at two of these genes (ITGA4 \textit{ITGA4 } and ITGB8\textit{ITGB8}) and at previously implicated loci (ITGAL \textit{ITGAL }and ICAM1\textit{ICAM1}). In all four cases, the expression-increasing allele also increases disease risk. We also identified likely causal missense variants in a gene implicated in primary immune deficiency, PLCG2\textit{PLCG2}, and a negative regulator of inflammation, SLAMF8\textit{SLAMF8}. Our results demonstrate that new associations at common variants continue to identify genes relevant to therapeutic target identification and prioritization.This work was co-funded by the Wellcome Trust [098051] and the Medical Research Council, UK [MR/J00314X/1]. Case collections were supported by Crohn’s and Colitis UK. KMdL, LM, CAL, YL, DR, JG-A, NJP, CAA and JCB are supported by the Wellcome Trust [098051; 093885/Z/10/Z; 094491/Z/10/Z]. KMdL is supported by a Woolf Fisher Trust scholarship. CAL is a clinical lecturer funded by the NIHR. We thank Anna Stanton for co-ordinating the Guy’s and St Thomas’ patient recruitment. We acknowledge support from the Department of Health via the NIHR comprehensive Biomedical Research Centre awards to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London and to Addenbrooke’s Hospital, Cambridge in partnership with the University of Cambridge. This research was also supported by the NIHR Newcastle Biomedical Research Centre. The UK Household Longitudinal Study is led by the Institute for Social and Economic Research at the University of Essex and funded by the Economic and Social Research Council

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore