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As impaired insulin signalling (IIS) is a risk factor for Alzheimer’s disease we crossed mice (Tg2576) over-
expressing human amyloid precursor protein (APP), with insulin receptor substrate 2 null (Irs2�/�) mice
which develop insulin resistance. The resulting Tg2576/Irs2�/� animals had increased tau phosphorylation
but a paradoxical amelioration of Ab pathology. An increase of the Ab binding protein transthyretin sug-
gests that increased clearance of Ab underlies the reduction in plaques. Increased tau phosphorylation
correlated with reduced tau-phosphatase PP2A, despite an inhibition of the tau-kinase glycogen synthase
kinase-3. Our findings demonstrate that disruption of IIS in Tg2576 mice has divergent effects on patho-
logical processes—a reduction in aggregated Ab but an increase in tau phosphorylation. However, as these
effects are accompanied by improvement in behavioural deficits, our findings suggest a novel protective
effect of disrupting IRS2 signalling in AD which may be a useful therapeutic strategy for this condition.

� 2009 Elsevier Inc. Open access under CC BY license.
Introduction

Alzheimer’s disease (AD) is characterised by extracellular pla-
ques, composed predominantly of b-amyloid (Ab) peptides and
intracellular neurofibrillary tangles (NFTs), composed of hyper-
phosphorylated forms of the microtubule associated protein tau.
The amyloid cascade hypothesis suggests that generation and
aggregation of Ab precedes and indeed promotes tau-related
pathology in AD pathogenesis. Altered IIS may be a critical modifier
of these processes. For example, IIS regulates both Ab formation
and turnover [1–3] and tau phosphorylation [4,5] while in humans
type 2 diabetes and variation in IIS genes are associated with AD
[6–8]. Furthermore, in rodent models, brain-insulin resistance in-
creases tau phosphorylation [9] while diet-induced insulin resis-
tance or impaired IGF-1 signalling increases Ab pathology [10].
Conversely, dietary restriction [11], which enhances insulin action,
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and IGF-1 therapy [12] ameliorate AD pathology. These observa-
tions have led to efforts to develop therapies for AD that improve
IIS. However, paradoxically, impaired IIS has also been shown to
reduce Ab aggregation and toxicity in a Caenorhabditis elegans mod-
el with AD-associated pathology in muscle [13] and impaired IIS is
associated with increased longevity in a variety of model organ-
isms [14]. To determine whether toxic or protective effects of re-
duced IIS upon AD pathology predominate in the mammalian
brain, we disrupted IIS in a mouse model of Ab deposition by cross-
ing plaque-prone Tg2576 mice with Irs2�/� mice, a model of type 2
diabetes.
Materials and methods

Animals

Tg2576 mice, expressing the Swedish mutant form of APP
(APP—K670N, M671L) [15], were bred into Irs2�/� mice [16] as
follows: male Tg2576 (C57Bl/6.SJL) were initially crossed with
Irs2+/� females (C57Bl/6). We then bred the F1 Tg2576 Irs2+/� males
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with Irs2+/� females and the F1 Tg2576 Irs2+/� females with Irs2+/�

males. These crosses generated F2 Tg2576/Irs2�/� and WT litter-
mates that were used in all experiments. Mice were maintained
on a 12-h light/dark cycle with free access to water and standard
mouse chow (4% fat, RM1, Special Diet Services). Mice were han-
dled and all in vivo studies performed in accordance with the Uni-
ted Kingdom Animals (Scientific Procedures) Act (1986) and
University College London Ethical Review Process guidelines.

Protein extraction

Tissue was homogenised at 4 �C in 8-fold (mgs/lL) volume of PBS
buffer (10 mM Phosphate, 140 mM NaCl, 2.7 mM KCl, 1 mM EDTA,
10 mM b-glycerolphosphate, 10 mM NaF, pH 7.4, and protease
[Roche, UK], phosphatase inhibitor cocktails [Sigma, UK]). Homoge-
nates were spun (100,000g, 4 �C for 30 min). The supernatant (S1)
was collected and the pellet resuspended with the addition of 1% Tri-
ton-X 100, vortexed for 1 min, placed at 4 �C for 10 min and sub-
jected to a repeat centrifugation. The supernatant (S2) was stored
at�80 �C. P2 pellets were extracted with a 8-fold volume of 70% for-
mic acid, resuspended, vortexed and placed at 4 �C over night. Fol-
lowing centrifugation at 100,000g (4 �C; 30 min), supernatants
collected and neutralised with a19 fold volume of neutralisation buf-
fer (1 M Tris base, 0.5 M Na2HPO4, 0.05% NaN3).

Western blotting

Phosphorylated tau. S1 and S2 samples were diluted in equal vol-
umes of 2� reducing sample buffer (BioRad, UK), heated to 100 �C for
5 min, spun and separated on 8% SDS–polyacrylamide gels.
Primary antibodies were detected with appropriate secondary anti-
bodies conjugated to fluorophors of 700 or 800 nm, and densitome-
try performed, using a near infrared Odyssey imager (Licor, UK).
Phospho-tau immunoreactivity values were normalized to total tau.

Detection of full-length APP and APP-CTFs. S2 fractions were used
for detection of full-length holo-APP and COOH-terminal fragments
of APP (APP-CTFs). Holo-APP was detected using a 6% Tris–glycine
SDS–PAGE with polyclonal anti-APP antibody 369(20). APP-CTFs
were detected using 4–12% Bis-Tris NuPAGE system (Invitrogen,
Fig. 1. Phospho-tau immunoreactivity is increased in temporal cortex of Tg2576/Irs2�/� m
age-matched wild-type (WT); Tg2576; Irs2�/� and Tg2576/Irs2�/� animals. (B) Data sho
genotype (ANOVA with post hoc Tukeys test; n = 29) showed significant increases in ta
epitopes recognised by antibodies MC6, CP13, PG5, PHF1, and TG3 but not at the overla
UK). Levels of full-length APP were normalized to the levels of
actin. APP-CTFb and APP-CTFa levels were normalized to full-
length APP.

Other proteins. For all other phospho-proteins, levels were nor-
malized to total protein and non-phosphoproteins to b-actin.

Immunohistochemistry

Histological staining. Brains were dissected between 11 and
14 months of age, fixed in 10% formalin and paraffin embedded.
Tissue sections of 10 lm thickness were stained with haematoxy-
lin/eosin, Nissl or Gallyas methods or with Congo red. B19 is a rab-
bit polyclonal raised to adult bovine tau, reacting with all isoforms
in a phosphorylation-independent manner [17]. A rabbit poly-
clonal antibody to human Ab42 (Bio-Source, Belgium) was used
for the detection of Ab.

Immunocytochemistry. Immunohistochemical labelling of brain
tissue was performed using the ABC method, as previously de-
scribed (22). Briefly, tissue sections were treated with H2O2 and
incubated with a blocking solution (10% v/v horse serum in TBS—
10 mM Tris, 150 mM NaCl, pH 7.4). After overnight incubation with
primary antibody, sections were incubated with horse anti-mouse
antibodies conjugated to biotin followed by the ABC complex (Vec-
tor Labs, Belgium). Peroxidase activity was revealed using diam-
inobenzidine as chromogen. For immunolabelling with the Ab
antibodies, rehydrated tissue sections were pre-treated with
100% formic acid for 10 min before incubation with the blocking
solution.

Quantification of Ab staining. Digital images of whole brain sag-
ittal sections taken close to the midline, were analysed with the
NIH Image J program: the total area covered by Ab positive depos-
its was measured using image thresholding and the total cortex
surface was measured using manual selection. The area covered
by Ab deposits is expressed relative to the total cortex surface.

Ab ELISA

Levels of human Ab1–40 and Ab1–42 in S1 and S2 fractions and
formic acid extracted P2 pellets were measured by ELISA
ice. (A) Phosphospecific anti-tau antibodies were used to probe temporal cortex of
wn is normalised to a phosphorylation-independent tau antibody. (C) Analysis by
u phosphorylation in Tg2576/Irs2�/� animals relative to WT and Tg2576 animals at
pping AT8 and TAU1 epitopes.
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ac-cording to manufacturers instructions (The Genetics Company,
Switzerland).

Quantitative RT-PCR

Total RNA was extracted from frontal cortex using Triazol
according to manufacturers instructions (Sigma, UK). Total RNA
(1 mg) was reverse transcribed using random hexamers with a
Taqman RT reagent kit (Perkin Elmer, UK). Quantitative RT-PCR
for transthyretin was performed as previously described [18] and
using Taqman Gene Expression assay FAM/TAMRA primers
(Applied Biosystems): transthyretin (Ttr) (Mm00443267_m1),
Gapdh (Mm99999915_g1). Primers to mouse IDE, were designed
using Universal Probe Library (Roche, UK) software. Real time PCRs
were performed on a Lightcycler (Roche, UK) using QuantiTect
SYBR green reagent (Qiagen, UK).

Behaviour

For contextual conditioning mice at 10–12 months were trained
in a conditioning chamber (Med Associates, St. Albans, USA) in a
soundproof box—after a 120 s introductory period a tone (80 dB,
3.0 kHz) was presented for 30 s, the last 2 s of which coincided with
a foot-shock (0.75 mA). A further two tone/foot-shock pairings
were administered at 60 s intervals and after a final 60 s period
the mice were returned to their home cage. Twenty-four hours after
training the mice were re-exposed to the conditioning chamber for
5 min to test for contextual fear memory. Freezing behaviour (de-
fined as complete lack of movement, except for respiration) was
scored for 2 s in every 5 s.
Fig. 2. GSK-3 is inhibited and PP2a is reduced in mice lacking Irs2. The tau-kinase,
GSK-3 and the protein phosphatases PP1 and PP2A were examined in wild-type
(WT) and in IRS2�/� mice by Western blot. (A) Animals lacking Irs2 showed no
change in total GSK-3 protein or in phosphorylation at the Tyr279 in GSK-3a/GSK-
3b 216 epitope. However there was a substantial (p < 0.05) increase in GSK-3
phosphorylation at Ser 21 GSK-3a/Ser 9 GSK-3b epitope reflecting relative
inhibition of GSK-3 activity in these animals. (B) There was no change in PP1 but
a significant increase in PP2A in animals lacking Irs2. (C) Comparing PP2a in
hippocampus across all four genotypes confirmed a reduction in PP2a in all animals
lacking Irs2 but no effect of APP expression.
Results

Expression of mutant APP increases tau phosphorylation in the context
of Irs2 deletion

Modest increases in tau phosphorylation were seen in
12–15 month-old Irs2�/� mice. In contrast, in Tg2576/Irs2�/� mice
we detected substantially increased tau phosphorylation indicat-
ing that impaired IIS promotes tau phosphorylation which is in
turn enhanced by the presence of Ab pathology (Fig. 1). However,
we found no change in tau aggregation (data not shown) but did
detect reduced expression of the tau-phosphatase PP2a in animals
lacking Irs2; this latter observation may, as suggested by others [9],
underlie the increased tau phosphorylation seen in Irs2�/� animals
even though the tau-kinase glycogen synthase kinase-3 (GSK-3)
was relatively inhibited (Fig. 2).

Deletion of Irs2 reduces amyloid burden in Tg2576 mice

Twelve month old Tg2576 mice displayed the expected numer-
ous, large Congophilic Ab deposits but in contrast, in age-matched
Tg2576/Irs2�/� mice plaque number appeared reduced and plaques
were smaller and less intensely labelled. Quantification of extracel-
lular Ab deposits revealed that the area covered by Ab deposits was
significantly reduced in brains of the Tg2576/Irs2�/� mice com-
pared to littermate Tg2576 animals (p = 0.01; Fig. 3).

Measurement of APP metabolites in the temporal cortex of age-
matched Tg2576 and Tg2576/Irs2�/� mice, showed no differences in
holo-APP, or b C-terminal fragments or in soluble Ab1–40 and Ab1–42

levels (Fig. 3). However, there was a significant reduction in insol-
uble, aggregated Ab1–40 and Ab1–42 levels in Tg2576/Irs2�/� mice
compared to Tg2576 littermates, closely reflecting the reduction
in Ab load measured by immunocytochemistry. Together these re-
sults suggest that altered APP processing does not underlie the
alterations in Ab generation.



Fig. 3. Deletion of Irs2 reduces Ab deposition and decreases insoluble Ab. (A) Immunocytochemical labeling with a human specific anti-Ab antibody of whole brain frontal
cortex sections of 12 month-old Tg2576 and Tg2576/Irs2�/� mice. Scale bar = 200 microns. (B) Immunocytochemical with the anti-Ab antibody (left panels) and histochemical
labeling with Congo red (right panels) of temporal cortex sections of 12 month-old Tg2576 and Tg2576/Irs2�/� mice, showing the extent of Ab deposition in representative
animals. Scale bars = 50 microns. (C) The mean surface covered by Ab deposits in the cortex was significantly reduced in Tg2576/Irs2�/� mice compared with Tg2576 mice
(n = 32; *p = 0.01, t-test). (D) APP processing was examined by immunoblotting for holo-APP and APP-CTFs in temporal cortex of Tg2576 and Tg2576/Irs2�/� animals. Holo-APP
values were normlised to actin, CTF values were normalised to holo-APP. No differences were found between genotypes. (E) Human Ab1–40 and Ab1–42 were measured by
ELISA in S1 (soluble) and S2 (detergent soluble) fractions and formic acid extracts of P2 pellets from temporal cortex. Significant reductions in Ab1–40 and Ab1–42 were found in
formic acid extracts from Tg2576/Irs2�/� compared to Tg2576 animals (n = 21; *p = 0.0005 [Ab1–40] and 0.002 [Ab1–42], t-test).

Fig. 4. Increase in insulin degrading enzyme and in transthyretin in mice lacking Irs2. Amyloid turnover is regulated by proteolysis through proteases such as insulin
degrading enzyme (IDE) and by increased clearance following binding to proteins such as transthyretin; both known to be altered in response to insulin signalling. IDE mRNA
was unaltered in IRS2�/� mice (A) but protein levels in the membrane-bound fraction were modestly increased (B). Transthyretin mRNA was increased substantially (3.9-
fold; p < 0.02; SEM 1.05) in both genotypes lacking Irs2.
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Reduced Ab burden is associated with increased expression of
transthyretin and altered membrane expression of insulin degrading
enzyme

Ab clearance is regulated by both increased proteolysis and
through mechanisms dependent on binding to carrier proteins
including transthyretin. Both mechanisms have been implicated
in IIS—one of the key Ab proteases, insulin degrading enzyme
(IDE) or insulysin (38), is involved in both insulin and Ab degrada-
tion and transthyretin, recently implicated in Ab proteolysis as
well as Ab clearance [19], is elevated in both insulin resistant mice
and people with type II diabetes [20,21]. We therefore examined
the expression of both genes. IDE mRNA expression was not altered
but TTR expression was increased 3.9-fold (p = 0.01) in animals
null for Irs2 compared to wild-type animals (Fig. 4A,C). We next
examined the protein levels of IDE by western blotting. As it has
been recently reported that membrane-bound, but not cytosolic,
IDE protein is significantly decreased in brain tissue of individuals
at high risk of developing AD (40), we examined IDE in both the
soluble and detergent soluble fractions. There was a significant in-
crease in membrane associated fraction in Tg2576/Irs2�/� animals
(mean 1 (SD 0.4) vs. 1.6 (SD 0.6); t-2.55; p < 0.05) (Fig. 4B).

Deletion of Irs2 reverses behavioural deficits in Tg2576 mice

To assess the impact of disrupted Irs2 on the hippocampal learn-
ing and memory ability of the Tg2576 mice, we tested 10–12 month
old mice in contextual fear conditioning, a behavioural paradigm
previously shown to be impaired in the Tg2576 model [22]. One-
way ANOVA showed that there was an overall significant difference
between the groups (n = 32; F3, 28 = 4.6, p = 0.01) due to impairment
in Tg2576 mutants (post hoc Tukey’s p < 0.05 for all groups). Thus,
the deletion of the Irs2 gene in the Tg2576 mice is able to rescue
the contextual fear deficit suggesting that the reduction of Ab load
and/or the inhibition of GSK-3 in these animals reversed the effects
of over-expression of human APPsw.

Discussion

Considerable evidence implicates insulin resistance in the path-
ogenesis of AD and underlies current efforts to treat AD by improv-
ing insulin sensitivity. However, we find that disrupting Irs2 in
Tg2576 mice results in improvement of both Ab plaque burden
and behaviour despite an exacerbation of tau phosphorylation
and the presence of insulin resistance. Previously, over-expression
of APP in mice was shown to induce transthyretin expression to-
gether with evidence of increased IIS [23]. It was suggested that
these are protective mechanisms resulting in the absence of the
amyloid cascade in mice. Subsequently, and supportive of this
hypothesis, transthyretin protein was shown to prevent Ab toxicity
in vitro [24,25] and in mice over-expressing APP, neutralisation
with antibody or deletion of the TTR gene both enhance pathology
[26,27]. In addition to these roles, transthyretin has been shown
recently to be, like IDE, an Ab protease [19] and transthyretin pro-
tein levels in CSF are decreased in AD [28,29]. Our data demon-
strates a substantial increase in transthyretin expression
accompanying the similarly substantial amelioration of plaque
pathology, Ab fibrillisation and behavioural deficits; in line with
a protective effect of transthyretin.

In marked contrast to the potentially beneficial reduction in Ab
pathology, we found increased tau phosphorylation in Tg2276 mice
with disruption of Irs2. However we found no evidence of tangle
formation, consistent with previous observations [9]. The increase
in tau phosphorylation was observed at many but not all epitopes
examined. The most pronounced changes were at epitopes posi-
tioned at the 396/404, and 235 and 231 sites, sites known to be
phosphorylated in AD [30]. However, the AT8/TAU1 epitope cover-
ing Ser199/Ser202/Thr205, a key GSK-3 site which is also highly
phosphorylated in AD brain, was unaffected in the Tg2576/Irs2�/�

animals. When we examined tau-kinase activity in Irs2�/� mice
we found no increase in the activities of GSK-3, like others previ-
ously [9], or in the GSK3 and CDK5 substrate CRMP-2 (data not
shown). These data are consistent with the pattern of tau phos-
phorylation changes we observed, in particular the absence of an
increase in phosphorylation at the key GSK-3 sites—Ser199/
Ser202/Thr205. However we did find a highly significant decrease
in the tau-phosphatase PP2A in Irs2�/� mice, suggesting that the
mechanism of effect might be mediated not by an increase in ki-
nase activity but by a decrease in the activity of this phosphatase.

The relative role of amyloid versus tau pathologies in influencing
neuronal dysfunction and cognitive impairment has been of consid-
erable interest and indeed controversy. The generation of a mouse
model with both decreased Ab aggregation and deposition but in-
creased tau phosphorylation permitted us to directly address this
question. Using a standard paradigm of hippocampal dependent
learning, contextual fear conditioning, we observed a complete
reversal of behavioural deficits in the context of Irs2 deletion. Inter-
estingly it has been reported that the Ab induced impairment in LTP,
known to be present in the Tg2576 animals [22], is reversed by insu-
lin [31]. The mechanism whereby insulin might restore LTP is not
known but one promising candidate is GSK-3 as we and others have
recently demonstrated that GSK-3 inhibition is essential for LTP
[32,33]. In the Tg2576/Irs2�/� animals the reduction in Ab and the
relative inhibition of GSK-3 might both, together or separately, con-
tribute to the reversal of the behavioural phenotype.

Although much of the current literature suggests that insulin
resistance is an aetiological factor in AD, we have recently demon-
strated that mice lacking Irs1 have increased lifespan and reduced
age-related pathology [34] and deletion of Irs2 in the mouse brain
increases longevity [35]. In C. elegans, abrogating IIS protects
against a range of proteotoxic neuropathologies, including Ab tox-
icity [13,36]. Our new findings demonstrate that this is also the
case for mammals with specific disruption of Irs2 and suggests that
for therapeutic manipulation of this pathway to be beneficial in the
treatment of AD an increased understanding of the complex signal-
ling and gene expression mechanisms downstream of IIS will be
required.
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