764 research outputs found

    Why Wait?: Early Enteral Feeding After Pediatric Gastrostomy Tube Placement

    Get PDF
    Purpose Early initiation of feedings after gastrostomy tube (GT) placement may reduce associated hospital costs, but many surgeons fear complications could result from earlier feeds. We hypothesized that, irrespective of placement method, starting feedings within the first 6 h following GT placement would not result in a greater number of post-operative complications. Methods An IRB-approved retrospective review of all GTs placed between January 2012 and December 2014 at three academic institutions was undertaken. Data was stratified by placement method and whether the patient was initiated on feeds at less than 6 h or after. Baseline demographics, operative variables, post-operative management and complications were analyzed. Descriptive statistics were used and P-values < 0.05 were considered significant. Results One thousand and forty-eight patients met inclusion criteria. GTs were inserted endoscopically (48.9%), laparoscopically (44.9%), or via an open approach (6.2%). Demographics were similar in early and late fed groups. When controlling for method of placement, those patients who were fed within the first 6 h after gastrostomy placement had shorter lengths of stay compared to those fed greater than 6 h after placement (P < 0.05). Total post-operative outcomes were equivalent between feeding groups for all methods of placement (laparoscopic (P = 0.87), PEG (P = 0.94), open (P = 0.81)). Conclusions Early initiation of feedings following GT placement was not associated with an increase in complications. Feeds initiated earlier may shorten hospital stays and decrease overall hospital costs

    Lifetime determination of excited states in Cd-106

    Get PDF
    Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps

    Molecular clouds in the center of M81

    Full text link
    We investigate the molecular gas content and the excitation and fragmentation properties in the central region of the spiral galaxy Messier 81 in both the ^{12}CO(1-0) and ^{12}CO(2-1) transitions. We have recently observed the two transitions of CO in the M~81 center with A, B, and HERA receivers of the IRAM 30-m telescope. We find no CO emission in the inner ∌\sim 300 pc and a weak molecular gas clump structure at a distance of around 460 pc from the nucleus. Observations of the first two CO transitions allowed us to compute the line ratio, and the average I_{21}/I_{10} ratio is 0.68 for the M~81 center. This low value, atypical both of the galactic nuclei of spiral galaxies and of interacting systems, is probably associated to diffuse gas with molecular hydrogen density that is not high enough to excite the CO molecules. After analyzing the clumping properties of the molecular gas in detail, we identify very massive giant molecular associations (GMAs) in CO(2-1) emission with masses of ∌\sim 105^{5} M⊙_\odot and diameters of ∌\sim 250 pc. The deduced N(H_{2})/I_{CO} ratio for the individually resolved GMAs, assumed to be virialized, is a factor of ∌\sim 15 higher than the \textit{standard} Galactic value, showing - as suspected - that the X ratio departs significantly from the mean for galaxies with an unusual physics of the molecular gas.Comment: 12 pages, 7 figures, 6 tables. Accepted for pubblication in A&

    The Molecular Interstellar Medium of the Local Group Dwarf NGC6822

    Full text link
    Do molecular clouds collapse to form stars at the same rate in all environments? In large spiral galaxies, the rate of transformation of H2 into stars (hereafter SFE) varies little. However, the SFE in distant objects (z~1) is much higher than in the large spiral disks that dominate the local universe. Some small local group galaxies share at least some of the characteristics of intermediate-redshift objects, such as size or color. Recent work has suggested that the Star Formation Efficiency (SFE, defined as the SFRate per unit H2) in local Dwarf galaxies may be as high as in the distant objects. A fundamental difficulty in these studies is the independent measure of the H2 mass in metal-deficient environments. At 490 kpc, NGC6822 is an excellent choice for this study; it has been mapped in the CO(2-1) line using the multibeam receiver HERA on the 30 meter IRAM telescope, yielding the largest sample of giant molecular clouds (GMCs) in this galaxy. Despite the much lower metallicity, we find no clear difference in the properties of the GMCs in NGC 6822 and those in the Milky Way except lower CO luminosities for a given mass. Several independent methods indicate that the total H2 mass in NGC 6822 is about 5 x 10^6 Msun in the area we mapped and less than 10^7 Msun in the whole galaxy. This corresponds to a NH2/ICO ~ 4 x 10^{21} cm^-2 /(Kkm/s) over large scales, such as would be observed in distant objects, and half that in individual GMCs. No evidence was found for H2 without CO emission. Our simulations of the radiative transfer in clouds are entirely compatible with these NH2/ICO values. The SFE implied is a factor 5 - 10 higher than what is observed in large local universe spirals.Comment: 16 pages, 13 figures. Accepted for publication in Astronomy and Astrophysic

    The Spitzer Local Volume Legacy: Survey Description and Infrared Photometry

    Get PDF
    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, H-alpha, and HST imaging from 11HUGS (11 Mpc H-alpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8um PAH emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between infrared-to-ultraviolet ratio and ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.Comment: Accepted for publication in ApJ; Figures 1,8,9 provided as jpeg

    A practical approach to continuous glucose monitoring (rtCGM) and FreeStyle Libre systems (isCGM) in children and young people with Type 1 diabetes

    Get PDF
    Real-time continuous glucose monitoring (rtCGM) and FreeStyle Libre glucose monitoring systems (isCGM) are new evolving technologies used in the management of Type 1 diabetes. They offer potential to improve diabetes control and reduce hypoglycaemia. rtCGM can be linked to insulin pump providing hybrid closed loop therapy. Families of children and young people are keen to have the benefit from these technologies. These are relatively expensive so it is important that health care professionals, families of children and young people (CYP) with diabetes are adequately trained in the use of these devices. Health care professionals need to be able to make patient selection based on individual needs and preferences to achieve maximum benefit. Association of Children’s Diabetes Clinicians (ACDC) developed a comprehensive guideline in 2017 to help identify which patients may be most likely to benefit and how these technologies may be practically implemented. Since then new technologies have been introduced and the use of GCM has expanded in routine clinical practice. This article, aims to provide a practical approach and help identify which patients may be most likely to benefit and how the technology may be implemented in order to maximise the clinical benefits

    Higgs Boson Masses in the Complex NMSSM at One-Loop Level

    Get PDF
    The Next-to-Minimal Supersymmetric Extension of the Standard Model (NMSSM) with a Higgs sector containing five neutral and two charged Higgs bosons allows for a rich phenomenology. In addition, the plethora of parameters provides many sources of CP violation. In contrast to the Minimal Supersymmetric Extension, CP violation in the Higgs sector is already possible at tree-level. For a reliable understanding and interpretation of the experimental results of the Higgs boson search, and for a proper distinction of Higgs sectors provided by the Standard Model or possible extensions, the Higgs boson masses have to be known as precisely as possible including higher-order corrections. In this paper we calculate the one-loop corrections to the neutral Higgs boson masses in the complex NMSSM in a Feynman diagrammatic approach adopting a mixed renormalization scheme based on on-shell and DRˉ\bar{DR} conditions. We study various scenarios where we allow for tree-level CP-violating phases in the Higgs sector and where we also study radiatively induced CP violation due to a non-vanishing phase of the trilinear coupling AtA_t in the stop sector. The effects on the Higgs boson phenomenology are found to be significant. We furthermore estimate the theoretical error due to unknown higher-order corrections by both varying the renormalization scheme of the top and bottom quark masses and by adopting different renormalization scales. The residual theoretical error can be estimated to about 10%

    \u3cem\u3eg\u3c/em\u3e Factor of the 2\u3csup\u3e+\u3c/sup\u3e\u3csub\u3e1\u3c/sub\u3e State of \u3csup\u3e170\u3c/sup\u3eHf

    Get PDF
    The g factor of the 2+1 state of 170Hf was measured by perturbed Îł-Îł angular correlation in a static external magnetic ïŹeld. The result, g(2+1) = 0.28(5), extends the systematics of g factors of even-even Hf isotopes to N = 98 and enables a better test of theoretical models. The g(2+1) experimental values of these isotopes exhibit a remarkable constancy as a function of neutron number. This phenomenon, which was also observed for other isotopic chains in the Gd–W range, is explained in terms of a recently proposed empirical model

    The Calibration of Monochromatic Far-Infrared Star Formation Rate Indicators

    Get PDF
    (Abridged) Spitzer data at 24, 70, and 160 micron and ground-based H-alpha images are analyzed for a sample of 189 nearby star-forming and starburst galaxies to investigate whether reliable star formation rate (SFR) indicators can be defined using the monochromatic infrared dust emission centered at 70 and 160 micron. We compare recently published recipes for SFR measures using combinations of the 24 micron and observed H-alpha luminosities with those using 24 micron luminosity alone. From these comparisons, we derive a reference SFR indicator for use in our analysis. Linear correlations between SFR and the 70 and 160 micron luminosity are found for L(70)>=1.4x10^{42} erg/s and L(160)>=2x10^{42} erg/s, corresponding to SFR>=0.1-0.3 M_sun/yr. Below those two luminosity limits, the relation between SFR and 70 micron (160 micron) luminosity is non-linear and SFR calibrations become problematic. The dispersion of the data around the mean trend increases for increasing wavelength, becoming about 25% (factor ~2) larger at 70 (160) micron than at 24 micron. The increasing dispersion is likely an effect of the increasing contribution to the infrared emission of dust heated by stellar populations not associated with the current star formation. The non-linear relation between SFR and the 70 and 160 micron emission at faint galaxy luminosities suggests that the increasing transparency of the interstellar medium, decreasing effective dust temperature, and decreasing filling factor of star forming regions across the galaxy become important factors for decreasing luminosity. The SFR calibrations are provided for galaxies with oxygen abundance 12+Log(O/H)>8.1. At lower metallicity the infrared luminosity no longer reliably traces the SFR because galaxies are less dusty and more transparent.Comment: 69 pages, 19 figures, 2 tables; accepted for publication on Ap
    • 

    corecore