86 research outputs found

    Vega—A small, low cost, ground robot for nuclear decommissioning

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-08-20, rev-recd 2021-11-03, accepted 2021-11-05, pub-electronic 2021-11-25Article version: VoRPublication status: PublishedFunder: Royal Academy of Engineering; Id: http://dx.doi.org/10.13039/501100000287Funder: Engineering and Physical Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000266Abstract: This paper presents the Vega robot, which is a small, low cost, potentially disposable ground robot designed for nuclear decommissioning. Vega has been developed specifically to support characterization and inspection operations, such as 2D and 3D mapping, radiation scans and sample retrieval. The design and construction methodology that was followed to develop the robot is described and its capabilities detailed. Vega was designed to provide flexibility, both in software and hardware, is controlled via tele‐operation, although it can be extended to semi and full autonomy, and can be used in either tethered or untethered configurations. A version of the tethered robot was designed for extreme radiation tolerance, utilizing relay electronics and removing active electronic systems. Vega can be outfitted with a multitude of sensors and actuators, including gamma spectrometers, alpha/beta radiation sensors, LiDARs and robotic arms. To demonstrate its flexibility, a 5 degree‐of‐freedom manipulator has been successfully integrated onto Vega, facilitating deployments where handling is required. To assess the tolerance of Vega to the levels of ionizing radiation that may be found in decommissioning environments, its individual components were irradiated, allowing estimates to be made of the length of time Vega would be able to continue to operate in nuclear environments. Vega has been successfully deployed in an active environment at the Dounreay nuclear site in the UK, deployed in nonactive environments at the Atomic Weapons Establishment, and demonstrated to many other organizations in the UK nuclear industry including Sellafield Ltd, with the goal of moving to active deployments in the future

    Screening for type 2 diabetes is feasible, acceptable, but associated with increased short-term anxiety: A randomised controlled trial in British general practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the feasibility and uptake of a diabetes screening programme; to examine the effects of invitation to diabetes screening on anxiety, self-rated health and illness perceptions.</p> <p>Methods</p> <p>Randomised controlled trial in two general practices in Cambridgeshire. Individuals aged 40–69 without known diabetes were identified as being at high risk of having undiagnosed type 2 diabetes using patient records and a validated risk score (n = 1,280). 355 individuals were randomised in a 2 to 1 ratio into non-invited (n = 238) and invited (n = 116) groups. A stepwise screening programme confirmed the presence or absence of diabetes. Six weeks after the last contact (either test or invitation), a questionnaire was sent to all participants, including non-attenders and those who were not originally invited. Outcome measures included attendance, anxiety (short-form Spielberger State Anxiety Inventory-STAI), self-rated health and diabetes illness perceptions.</p> <p>Results</p> <p>95 people (82% of those invited) attended for the initial capillary blood test. Six individuals were diagnosed with diabetes. Invited participants were more anxious than those not invited (37.6 vs. 34.1 STAI, p-value = 0.015), and those diagnosed with diabetes were considerably more anxious than those classified free of diabetes (46.7 vs. 37.0 STAI, p-value = 0.031). Non-attenders had a higher mean treatment control sub-scale (3.87 vs. 3.56, p-value = 0.016) and a lower mean emotional representation sub-scale (1.81 vs. 2.68, p-value = 0.001) than attenders. No differences in the other five illness perception sub-scales or self-rated health were found.</p> <p>Conclusion</p> <p>Screening for type 2 diabetes in primary care is feasible but may be associated with higher levels of short-term anxiety among invited compared with non-invited participants.</p> <p>Trial registration</p> <p>ISRCTN99175498</p

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    Get PDF
    Background: The ‘exposome’ represents the accumulation of all environmental exposures across a lifetime. Topdown strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics) defines an individual’s metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. Methods: High-resolution 1H NMR spectroscopy (metabonomics) was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. Results: Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4- deoxy-erythronic acid) or one-carbon metabolism (dimethylglycine, creatinine, creatine), were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels) was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. Conclusions: This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental concentrations, paving the way for exposome research. Keywords: metabonomics, cadmium, environmental health, exposome, metabolomics, molecular epidemiolog

    Determinants of the urinary and serum metabolome in children from six European populations

    Get PDF
    Background Environment and diet in early life can affect development and health throughout the life course. Metabolic phenotyping of urine and serum represents a complementary systems-wide approach to elucidate environment–health interactions. However, large-scale metabolome studies in children combining analyses of these biological fluids are lacking. Here, we sought to characterise the major determinants of the child metabolome and to define metabolite associations with age, sex, BMI and dietary habits in European children, by exploiting a unique biobank established as part of the Human Early-Life Exposome project (http://www.projecthelix.eu). Methods Metabolic phenotypes of matched urine and serum samples from 1192 children (aged 6–11) recruited from birth cohorts in six European countries were measured using high-throughput 1H nuclear magnetic resonance (NMR) spectroscopy and a targeted LC-MS/MS metabolomic assay (Biocrates AbsoluteIDQ p180 kit). Results We identified both urinary and serum creatinine to be positively associated with age. Metabolic associations to BMI z-score included a novel association with urinary 4-deoxyerythronic acid in addition to valine, serum carnitine, short-chain acylcarnitines (C3, C5), glutamate, BCAAs, lysophosphatidylcholines (lysoPC a C14:0, lysoPC a C16:1, lysoPC a C18:1, lysoPC a C18:2) and sphingolipids (SM C16:0, SM C16:1, SM C18:1). Dietary-metabolite associations included urinary creatine and serum phosphatidylcholines (4) with meat intake, serum phosphatidylcholines (12) with fish, urinary hippurate with vegetables, and urinary proline betaine and hippurate with fruit intake. Population-specific variance (age, sex, BMI, ethnicity, dietary and country of origin) was better captured in the serum than in the urine profile; these factors explained a median of 9.0% variance amongst serum metabolites versus a median of 5.1% amongst urinary metabolites. Metabolic pathway correlations were identified, and concentrations of corresponding metabolites were significantly correlated (r > 0.18) between urine and serum. Conclusions We have established a pan-European reference metabolome for urine and serum of healthy children and gathered critical resources not previously available for future investigations into the influence of the metabolome on child health. The six European cohort populations studied share common metabolic associations with age, sex, BMI z-score and main dietary habits. Furthermore, we have identified a novel metabolic association between threonine catabolism and BMI of children

    Inclusive fitness theory and eusociality

    Get PDF

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≄140 mm Hg systolic blood pressure or  ≄90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
    • 

    corecore