55 research outputs found

    Cortico–Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine

    Get PDF
    Abstract Migraine is a recurring, episodic neurological disorder characterized by headache, nausea, vomiting, and sensory disturbances. These events are thought to arise from the activation and sensitization of neurons along the trigemino–vascular pathway. From animal studies, it is known that thalamocortical projections play an important role in the transmission of nociceptive signals from the meninges to the cortex. However, little is currently known about the potential involvement of cortico–cortical feedback projections from higher-order multisensory areas and/or feedforward projections from principle primary sensory areas or subcortical structures. In a large cohort of human migraine patients (N = 40) and matched healthy control subjects (N = 40), we used resting-state intrinsic functional connectivity to examine the cortical networks associated with the three main sensory perceptual modalities of vision, audition, and somatosensation. Specifically, we sought to explore the complexity of the sensory networks as they converge and become functionally coupled in multimodal systems. We also compared self-reported retrospective migraine symptoms in the same patients, examining the prevalence of sensory symptoms across the different phases of the migraine cycle. Our results show widespread and persistent disturbances in the perceptions of multiple sensory modalities. Consistent with this observation, we discovered that primary sensory areas maintain local functional connectivity but express impaired long-range connections to higher-order association areas (including regions of the default mode and salience network). We speculate that cortico–cortical interactions are necessary for the integration of information within and across the sensory modalities and, thus, could play an important role in the initiation of migraine and/or the development of its associated symptoms

    Migraine in the Young Brain: Adolescents vs. Young Adults

    Get PDF
    Migraine is a disease that peaks in late adolescence and early adulthood. The aim of this study was to evaluate age-related brain changes in resting state functional connectivity (rs-FC) in migraineurs vs. age-sex matched healthy controls at two developmental stages: adolescence vs. young adulthood. The effect of the disease was assessed within each developmental group and age- and sex-matched healthy controls and between developmental groups (migraine-related age effects). Globally the within group comparisons indicated more widespread abnormal rs-FC in the adolescents than in the young adults and more abnormal rs-FC associated with sensory networks in the young adults. Direct comparison of the two groups showed a number of significant changes: (1) more connectivity changes in the default mode network in the adolescents than in the young adults; (2) stronger rs-FC in the cerebellum network in the adolescents in comparison to young adults; and (3) stronger rs-FC in the executive and sensorimotor network in the young adults. The duration and frequency of the disease were differently associated with baseline intrinsic connectivity in the two groups. fMRI resting state networks demonstrate significant changes in brain function at critical time point of brain development and that potentially different treatment responsivity for the disease may result

    The Dark Energy Survey : more than dark energy – an overview

    Get PDF
    This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from ‘Science Verification’, and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be +cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed)

    Validation of the Body Concealment Scale for Scleroderma (BCSS): Replication in the Scleroderma Patient-centered Intervention Network (SPIN) Cohort

    Get PDF
    © 2016 Elsevier Ltd Body concealment is an important component of appearance distress for individuals with disfiguring conditions, including scleroderma. The objective was to replicate the validation study of the Body Concealment Scale for Scleroderma (BCSS) among 897 scleroderma patients. The factor structure of the BCSS was evaluated using confirmatory factor analysis and the Multiple-Indicator Multiple-Cause model examined differential item functioning of SWAP items for sex and age. Internal consistency reliability was assessed via Cronbach's alpha. Construct validity was assessed by comparing the BCSS with a measure of body image distress and measures of mental health and pain intensity. Results replicated the original validation study, where a bifactor model provided the best fit. The BCSS demonstrated strong internal consistency reliability and construct validity. Findings further support the BCSS as a valid measure of body concealment in scleroderma and provide new evidence that scores can be compared and combined across sexes and ages

    Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight

    Get PDF
    Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (P-Bonferroni <1.06 x 10(-7)). In additional analyses in 7,278 participants,Peer reviewe

    Human and mouse essentiality screens as a resource for disease gene discovery

    Get PDF
    The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery. Discovery of causal variants for monogenic disorders has been facilitated by whole exome and genome sequencing, but does not provide a diagnosis for all patients. Here, the authors propose a Full Spectrum of Intolerance to Loss-of-Function (FUSIL) categorization that integrates gene essentiality information to aid disease gene discovery

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore