11 research outputs found

    Meta-analysis of Cryogenian through modern quartz microtextures reveals sediment transport histories

    Get PDF
    Quantitative scanning electron microscopy (SEM) quartz microtextural analysis can reveal the transport histories of modern and ancient sediments. However, because workers identify and count microtextures differently, it is difficult to directly compare quantitative microtextural data analyzed by different workers. As a result, the defining microtextures of certain transport modes and their probabilities of occurrence are not well constrained. We used principal component analysis (PCA) to directly compare modern and ancient aeolian, fluvial, and glacial samples from the literature with 9 new samples from active aeolian and glacial environments. Our results demonstrate that PCA can group microtextural samples by transport mode and differentiate between aeolian and fluvial/glacial transport modes across studies. The PCA ordination indicates that aeolian samples are distinct from fluvial and glacial samples, which are in turn difficult to disambiguate from each other. Ancient and modern sediments are also shown to have quantitatively similar microtextural relationships. Therefore, PCA may be a useful tool to constrain the ambiguous transport histories of some ancient sediment grains. As a case study, we analyzed two samples with ambiguous transport histories from the Cryogenian Bråvika Member (Svalbard). Integrating PCA with field observations, we find evidence that the Bråvika Member facies investigated here includes aeolian deposition and may be analogous to syn-glacial Marinoan aeolian units including the Bakoye Formation in Mali and the Whyalla Sandstone in South Australia

    CHILES: HI morphology and galaxy environment at z=0.12 and z=0.17

    Get PDF
    We present a study of 16 HI-detected galaxies found in 178 hours of observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES). We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <= 0.183 which are among the worst affected by radio frequency interference (RFI). While this represents only 10% of the total frequency coverage and 18% of the total expected time on source compared to what will be the full CHILES survey, we demonstrate that our data reduction pipeline recovers high quality data even in regions severely impacted by RFI. We report on our in-depth testing of an automated spectral line source finder to produce HI total intensity maps which we present side-by-side with significance maps to evaluate the reliability of the morphology recovered by the source finder. We recommend that this become a common place manner of presenting data from upcoming HI surveys of resolved objects. We use the COSMOS 20k group catalogue, and we extract filamentary structure using the topological DisPerSE algorithm to evaluate the \hi\ morphology in the context of both local and large-scale environments and we discuss the shortcomings of both methods. Many of the detections show disturbed HI morphologies suggesting they have undergone a recent interaction which is not evident from deep optical imaging alone. Overall, the sample showcases the broad range of ways in which galaxies interact with their environment. This is a first look at the population of galaxies and their local and large-scale environments observed in HI by CHILES at redshifts beyond the z=0.1 Universe.Comment: 23 pages, 12 figures, 1 interactive 3D figure, accepted to MNRA

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    Characterizing hydrologic response in urban watersheds: a case study of Philadelphia, Pennsylvania

    No full text
    An analysis of hydrologic response in Philadelphia, Pennsylvania is conducted using rain and discharge data from August and September, 2011. Runoff ratio, response time, unit area peak discharge and the temporal accumulation of rain and runoff are used to quantify hydrologic response. Eight different watersheds are analyzed, and the geospatial differences amongst them allow correlations between these response metrics and both basin area and basin development. It is found that the fraction of developed land in Philadelphia watersheds influences response time and peak discharge; more developed, urbanized basins exhibit shorter response times and higher peak discharges than basins with a smaller fraction of developed lands. Storms are predicted to become stronger with rising sea surface temperatures, and as the city of Philadelphia becomes more developed, especially in currently moderately-developed watersheds, flood potential will increase

    A New Depositional Framework for Massive Iron Formations After the Great Oxidation Event

    No full text
    Abstract The oldest recognized proxies for low atmospheric oxygen are massive iron‐rich deposits. Following the rise of oxygen ∼2.4 billion years ago (Ga), massive iron formations (IFs) largely disappear from the geologic record, only to reappear in a pulse ∼1.88 Ga, which has been attributed to sea‐level transgressions, changing ocean chemistry triggered by intense volcanism, or lowered atmospheric oxygen levels. The North American Gogebic Range is one of the rare records of this pulse and even more uniquely has exposures of both volcanics and IF, providing an ideal field locality to investigate triggers for this pulse of IF. To determine the environmental context and key factors driving IF deposition after the initial rise in oxygen, we made detailed observations of the stratigraphy and facies relationships and present updated mapping relationships of the Gogebic Range Ironwood Iron Formation and the Emperor Volcanics. This work expands existing mine datasets and logs to constrain variations in stratigraphy. Our results are the first to quantitatively constrain thickness variations along the entire Gogebic Range and tie them to syn‐sedimentary faulting along listric normal faults and half grabens. Furthermore, our dataset suggests that initiation of intense syn‐basinal volcanism linked to a large igneous province does not coincide with initial iron deposition, thus cannot be invoked as a causal trigger. Finally, the possibility of iron deposition in a shallow‐water environment suggests that the post‐GOE IF pulse may not reflect global marine transgressions, but instead a chemocline shallowing due to changing global atmospheric oxygen

    Trends in the Representation of Women Among US Geoscience Faculty From 1999 to 2020: The Long Road Toward Gender Parity

    No full text
    Inequalities persist in the geosciences. White women and people of color remain under-represented at all levels of academic faculty, including positions of power such as departmental and institutional leadership. While the proportion of women among geoscience faculty has been cataloged previously, new programs and initiatives aimed at improving diversity, focused on institutional factors that affect equity in the geosciences, necessitate an updated study and a new metric for quantifying the biases that result in under-representation. We compile a data set of 2,531 tenured and tenure-track geoscience faculty from 62 universities in the United States to evaluate the proportion of women by rank and discipline. We find that 27% of faculty are women. The fraction of women in the faculty pool decreases with rank, as women comprise 46% of assistant professors, 34% of associate professors, and 19% of full professors. We quantify the attrition of women in terms of a fractionation factor, which describes the rate of loss of women along the tenure track and allows us to move away from the metaphor of the “leaky pipeline.” Efforts to address inequities in institutional culture and biases in promotion and hiring practices over the past few years may provide insight into the recent positive shifts in fractionation factor. Our results suggest a need for 1:1 hiring between men and women to reach gender parity. Due to significant disparities in race, this work is most applicable to white women, and our use of the gender binary does not represent gender diversity in the geosciences
    corecore