10 research outputs found
Detailed stratified GWAS analysis for severe COVID-19 in four European populations
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe
Detailed stratified GWAS analysis for severe COVID-19 in four European populations
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German
Federal Ministry of Education and Research (01KI20197), Andre Franke, David
Ellinghaus and Frauke Degenhardt were supported by the Deutsche
Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic
Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal
Ministry of Education and Research (BMBF) within the framework of the
Computational Life Sciences funding concept (CompLS grant 031L0165). David
Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk
Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana
Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German
Research Foundation (DFG) through the Research Training Group 1743, "Genes,
Environment and Inflammation". This project was supported by a Covid-19 grant from
the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197).
Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione
primaria cardiovascolare primaria nella popolazione italiana; The European Union
(EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project
LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca
corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione
IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi
was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research
(Covid-Bank). This research was partly funded by a MIUR grant to the Department of
Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This
study makes use of data generated by the GCAT-Genomes for Life. Cohort study of
the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program /
Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026);
the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529).
Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en
Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional
(FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national
grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”).
Additional data included in this study was obtained in part by the COVICAT Study
Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19
Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià
and Sara Marsal were supported by the Spanish Ministry of Economy and
Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36).
Antonio Julià was also supported the by national grant PI17/00019 from the Acción
Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque
Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received
Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal
de Investigación (AEI, Spain) and the European Regional Development Fund
(FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán
and Douglas Maya Miles are supported by the “Spanish Ministry of Economy,
Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404,
PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian
government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed,
COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant
FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud.
Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health
(CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from
Research Council of Norway grant no 312780 during the conduct of the study. Dr.
Solligård: reports grants from Research Council of Norway grant no 312769. The
BioMaterialBank Nord is supported by the German Center for Lung Research (DZL),
Airway Research Center North (ARCN). The BioMaterialBank Nord is member of
popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants
from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne
Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases,
University of Cologne, Cologne, Germany. He is supported by the German Federal
Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the
German Federal Ministry of Research and Education and is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's
Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded
by Technical University of Munich, Munich, Germany. Genotyping was performed by
the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM
Technology Centre, University of Helsinki. This work was supported by grants of the
Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland
and Lower Saxony. Kerstin U. Ludwig is supported by the German Research
Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the
Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported
by the Bavarian State Ministry for Science and Arts. Part of the genotyping was
supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA
BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative
Disease Research (JPND). Additional funding was derived from the German Research
Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is
supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH
state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist
Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision
Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf
are supported by the German Center for Infection Research (DZIF). Thorsen Brenner,
Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung
Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la
Cierva Incorporacion program, grant IJC2018-035131-I funded by
MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche
Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N
Mapping the human genetic architecture of COVID-19
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
Genomewide Association Study of Severe Covid-19 with Respiratory Failure.
BACKGROUND: There is considerable variation in disease behavior among patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19). Genomewide association analysis may allow for the identification of potential genetic factors involved in the development of Covid-19. METHODS: We conducted a genomewide association study involving 1980 patients with Covid-19 and severe disease (defined as respiratory failure) at seven hospitals in the Italian and Spanish epicenters of the SARS-CoV-2 pandemic in Europe. After quality control and the exclusion of population outliers, 835 patients and 1255 control participants from Italy and 775 patients and 950 control participants from Spain were included in the final analysis. In total, we analyzed 8,582,968 single-nucleotide polymorphisms and conducted a meta-analysis of the two case-control panels. RESULTS: We detected cross-replicating associations with rs11385942 at locus 3p21.31 and with rs657152 at locus 9q34.2, which were significant at the genomewide level (P<5×10-8) in the meta-analysis of the two case-control panels (odds ratio, 1.77; 95% confidence interval [CI], 1.48 to 2.11; P = 1.15×10-10; and odds ratio, 1.32; 95% CI, 1.20 to 1.47; P = 4.95×10-8, respectively). At locus 3p21.31, the association signal spanned the genes SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6 and XCR1. The association signal at locus 9q34.2 coincided with the ABO blood group locus; in this cohort, a blood-group-specific analysis showed a higher risk in blood group A than in other blood groups (odds ratio, 1.45; 95% CI, 1.20 to 1.75; P = 1.48×10-4) and a protective effect in blood group O as compared with other blood groups (odds ratio, 0.65; 95% CI, 0.53 to 0.79; P = 1.06×10-5). CONCLUSIONS: We identified a 3p21.31 gene cluster as a genetic susceptibility locus in patients with Covid-19 with respiratory failure and confirmed a potential involvement of the ABO blood-group system. (Funded by Stein Erik Hagen and others.)
Detailed stratified GWAS analysis for severe COVID-19 in four European populations
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~ 0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung
Mapping the human genetic architecture of COVID-19
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease