702 research outputs found

    Force-modulated reductive elimination from platinum(ii) diaryl complexes

    Get PDF
    Coupled mechanical forces are known to drive a range of covalent chemical reactions, but the effect of mechanical force applied to a spectator ligand on transition metal reactivity is relatively unexplored. Here we quantify the rate of C(sp(2))–C(sp(2)) reductive elimination from platinum(ii) diaryl complexes containing macrocyclic bis(phosphine) ligands as a function of mechanical force applied to these ligands. DFT computations reveal complex dependence of mechanochemical kinetics on the structure of the force-transducing ligand. We validated experimentally the computational finding for the most sensitive of the ligand designs, based on MeOBiphep, by coupling it to a macrocyclic force probe ligand. Consistent with the computations, compressive forces decreased the rate of reductive elimination whereas extension forces increased the rate relative to the strain-free MeOBiphep complex with a 3.4-fold change in rate over a ∌290 pN range of restoring forces. The calculated natural bite angle of the free macrocyclic ligand changes with force, but (31)P NMR analysis and calculations strongly suggest no significant force-induced perturbation of ground state geometry within the first coordination sphere of the (P–P)PtAr(2) complexes. Rather, the force/rate behavior observed across this range of forces is attributed to the coupling of force to the elongation of the O⋯O distance in the transition state for reductive elimination. The results suggest opportunities to experimentally map geometry changes associated with reactions in transition metal complexes and potential strategies for force-modulated catalysis

    Mechanistic Analysis of Gold(I)-Catalyzed Intramolecular Allene Hydroalkoxylation Reveals an Off-Cycle Bis(gold) Vinyl Species and Reversible C–O Bond Formation

    Get PDF
    Mechanistic investigation of gold(I)-catalyzed intramolecular allene hydroalkoxylation established a mechanism involving rapid and reversible C–O bond formation followed by turnover-limiting protodeauration from a mono(gold) vinyl complex. This on-cycle pathway competes with catalyst aggregation and formation of an off-cycle bis(gold) vinyl complex

    Mechanochemical Regulation of Oxidative Addition to a Palladium(0) Bisphosphine Complex.

    Get PDF
    Here, we report the effect of force applied to the biaryl backbone of a bisphosphine ligand on the rate of oxidative addition of bromobenzene to a ligand-coordinated palladium center. Local compressive and tensile forces on the or-der of 100 pN were generated using a stiff stilbene force probe. A compressive force increases the rate of oxidative addition, whereas a tensile force decreases the rate, relative to that of the parent complex of strain-free ligand. Rates vary by a factor of ~6 across ~340 pN of force applied to the complexes. The crystal structures and DFT calculations support that force-induced perturbation of the geometry of the reactant is negligible. The force-rate relationship ob-served is mainly attributed to the coupling of force to nuclear motion comprising the reaction coordinate. These observations inform the development of catalysts whose activity can be tuned by an external force that is adjusted within a catalytic cycle

    Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts

    Full text link
    Thiols are smoothly and efficiently oxidized to disulfides (RSSR) with air in the presence of gold nanoparticles supported on CeO2 in absence of solvent, as well as in aqueous solutions and neutral pH. It is shown that the reaction can occur through the coupling of two sulphur radicals on the metal surface. The sulphur radicals are formed from thiols by one-electron oxidation with the metal. This reaction mechanism strongly resembles that found for sulfhydryl oxidases, a class of enzymes which are involved in the oxidative protein folding through de novo formation of disulfides from thiols.lFinancial support by Consolider-Ingenio 2010 (project MULTICAT), Spanish MICINN (Projects MAT2006-14274-C02-01 and MAT2011-28009), Generalitat Valenciana (Project PROMETEO/2008/130) and Fundacion Areces are gratefully acknowledged. T.R. expresses her gratitude to Consejo Superior de Investigaciones Cientificas for an I3-P fellowship.Corma CanĂłs, A.; RĂłdenas Torralba, T.; Sabater Picot, MJ. (2012). Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts. Chemical Science. 3(2):398-404. https://doi.org/10.1039/c1sc00466bS39840432Block, E. (1992). The Organosulfur Chemistry of the GenusAllium - Implications for the Organic Chemistry of Sulfur. Angewandte Chemie International Edition in English, 31(9), 1135-1178. doi:10.1002/anie.199211351Kanda, Y., & Fukuyama, T. (1993). Total synthesis of (+)-leinamycin. Journal of the American Chemical Society, 115(18), 8451-8452. doi:10.1021/ja00071a066Gilbert, H. F. (1995). [2] Thiol/disulfide exchange equilibria and disulfidebond stability. Biothiols Part A Monothiols and Dithiols, Protein Thiols, and Thiyl Radicals, 8-28. doi:10.1016/0076-6879(95)51107-5Eckardt, N. A. (2006). Ferredoxin-Thioredoxin System Plays a Key Role in Plant Response to Oxidative Stress. The Plant Cell, 18(8), 1782-1782. doi:10.1105/tpc.106.180810Balmer, Y., Vensel, W. H., Cai, N., Manieri, W., Schurmann, P., Hurkman, W. J., & Buchanan, B. B. (2006). A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proceedings of the National Academy of Sciences, 103(8), 2988-2993. doi:10.1073/pnas.0511040103Swaisgood, H. E. (2005). The importance of disulfide bridging. Biotechnology Advances, 23(1), 71-73. doi:10.1016/j.biotechadv.2004.09.004Visschers, R. W., & de Jongh, H. H. J. (2005). Disulphide bond formation in food protein aggregation and gelation. Biotechnology Advances, 23(1), 75-80. doi:10.1016/j.biotechadv.2004.09.005Bulaj, G. (2005). Formation of disulfide bonds in proteins and peptides. Biotechnology Advances, 23(1), 87-92. doi:10.1016/j.biotechadv.2004.09.002KĂŒhle, E., & Klauke, E. (1977). Fluorinated Isocyanates and Their Derivatives as Intermediates for Biologically Active Compounds. Angewandte Chemie International Edition in English, 16(11), 735-742. doi:10.1002/anie.197707353Firouzabadi, H., Iranpoor, N., Parham, H., Sardarian, A., & Toofan, J. (1984). Oxidation of Thiols to Their Disulfides with Bis Trinitratocerium (IV)l Chromate [Ce(NO3)312CrO4and Pyridinum Chlorochromate. Synthetic Communications, 14(8), 717-724. doi:10.1080/00397918408059586Firouzabadi, H., Naderi, M., Sardarian, A., & Vessal, B. (1983). The Facile Oxidation of Thiols to Disulfides with Bis(2,2â€Č-Bipyridyl) Copper-(II) Permanganate. Synthetic Communications, 13(7), 611-615. doi:10.1080/00397918308059536Noureldin, N. A., Caldwell, M., Hendry, J., & Lee, D. G. (1998). Heterogeneous Permanganate Oxidation of Thiols. Synthesis, 1998(11), 1587-1589. doi:10.1055/s-1998-2190Wallace, T. J. (1966). Reactions of Thiols with Metals. I. Low-Temperature Oxidation by Metal Oxides1. The Journal of Organic Chemistry, 31(4), 1217-1221. doi:10.1021/jo01342a056Firouzabadi, H., Iranpoor, N., Kiaeezadeh, F., & Toofan, J. (1986). Chromium(VI) based oxidants-1. Tetrahedron, 42(2), 719-725. doi:10.1016/s0040-4020(01)87476-7McKillop, A., Koyunçu, D., Krief, A., Dumont, W., Renier, P., & Trabelsi, M. (1990). Efficicient, high yield, oxidation of thiols and selenols to disulphides and diselenides. Tetrahedron Letters, 31(35), 5007-5010. doi:10.1016/s0040-4039(00)97790-6Ramesha, A. R., & Chandrasekaran, S. (1994). A facile entry to macrocyclic disulfides: an efficient synthesis of redox-switched crown ethers. The Journal of Organic Chemistry, 59(6), 1354-1357. doi:10.1021/jo00085a025Ramadas, K., & Srinivasan, N. (1995). Sodium Chlorite - Yet Another Oxidant for Thiols to Disulphides. Synthetic Communications, 25(2), 227-234. doi:10.1080/00397919508010811Pryor, W. A., Church, D. F., Govindan, C. K., & Crank, G. (1982). Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. The Journal of Organic Chemistry, 47(1), 156-159. doi:10.1021/jo00340a038Iranpoor, N., Firouzabadi, H., & Zolfigol, M. A. (1998). Dinitrogen Tetroxide Copper Nitrate Complex [Cu(NO3)2.N2O4] As a New Nitrosating Agent for Catalytic Coupling of Thiols via Thionitrite. Synthetic Communications, 28(2), 367-375. doi:10.1080/00397919808005729Wu, X., Rieke, R. D., & Zhu, L. (1996). Preparation of Disulfides by the Oxidation of Thiols Using Bromine. Synthetic Communications, 26(1), 191-196. doi:10.1080/00397919608003879Ali, M. H., & McDermott, M. (2002). Oxidation of thiols to disulfides with molecular bromine on hydrated silica gel support. Tetrahedron Letters, 43(35), 6271-6273. doi:10.1016/s0040-4039(02)01220-0Khazaei, A., Zolfigol, M. A., & Rostami, A. (2004). 1,3-Dibromo-5,5-Dimethylhydantoin [DBDMH] as an Efficient and Selective Agent for the Oxidation of Thiols to Disulfides in Solution or under Solvent-Free Conditions. Synthesis, (18), 2959-2961. doi:10.1055/s-2004-834919Joshi, A. V., Bhusare, S., Baidossi, M., Qafisheh, N., & Sasson, Y. (2005). Oxidative coupling of thiols to disulfides using a solid anhydrous potassium phosphate catalyst. Tetrahedron Letters, 46(20), 3583-3585. doi:10.1016/j.tetlet.2005.03.040Patel, S., & Mishra, B. K. (2004). Cetyltrimethylammonium dichromate: a mild oxidant for coupling amines and thiols. Tetrahedron Letters, 45(7), 1371-1372. doi:10.1016/j.tetlet.2003.12.068Leino, R., & Lönnqvist, J.-E. (2004). A very simple method for the preparation of symmetrical disulfides. Tetrahedron Letters, 45(46), 8489-8491. doi:10.1016/j.tetlet.2004.09.100Delaude, L., & Laszlo, P. (1996). A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)1. The Journal of Organic Chemistry, 61(18), 6360-6370. doi:10.1021/jo960633pPeskin, A. V., & Winterbourn, C. C. (2001). Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radical Biology and Medicine, 30(5), 572-579. doi:10.1016/s0891-5849(00)00506-2Akdag, A., Webb, T., & Worley, S. D. (2006). Oxidation of thiols to disulfides with monochloro poly(styrenehydantoin) beads. Tetrahedron Letters, 47(21), 3509-3510. doi:10.1016/j.tetlet.2006.03.105Kirihara, M., Asai, Y., Ogawa, S., Noguchi, T., Hatano, A., & Hirai, Y. (2007). A Mild and Environmentally Benign Oxidation of Thiols to Disulfides. Synthesis, 2007(21), 3286-3289. doi:10.1055/s-2007-990800LIU, K.-T., & TONG, Y.-C. (1978). A Facile Conversion of Thiols to Disulfides. Synthesis, 1978(09), 669-670. doi:10.1055/s-1978-24844Rao, T. V., Sain, B., Murthy, P. S., Rao, T. S. R. P., Joshi, G. C., & Jain, A. K. (1997). Iron(III )–Ethylenediaminetetraacetic AcidMediated Oxidation of Thiols to Disulfides with MolecularOxygen†. Journal of Chemical Research, (8), 300-301. doi:10.1039/a702061iWalters, M. A., Chaparro, J., Siddiqui, T., Williams, F., Ulku, C., & Rheingold, A. L. (2006). The formation of disulfides by the [Fe(nta)Cl2]2− catalyzed air oxidation of thiols and dithiols. Inorganica Chimica Acta, 359(12), 3996-4000. doi:10.1016/j.ica.2006.03.043Rao, T. V., Rao, K. N., Jain, S. L., & Sain, B. (2002). COBALT PHTHALOCYANINE MEDIATED AEROBIC OXIDATION OF THIOLS: A SIMPLE AND CONVENIENT PREPARATION OF DISULPHIDES. Synthetic Communications, 32(8), 1151-1157. doi:10.1081/scc-120003604SimĂĄndi, L. I., NĂ©meth, S., & Rumelis, N. (1987). Cobalt(II) ion catalyzed oxidation of o-substituted anilines with molecular oxygen. Journal of Molecular Catalysis, 42(3), 357-360. doi:10.1016/0304-5102(87)85011-3S. Uemura , Comprehensive Organic Synthesis, B. M. Trost, I. Fleming Ed., Pergamon Press, New York, 1991, Vol 7., 757Hashemi, M. M., & Karimi-Jaberi, Z. (2004). Oxidation of Thiols to Disulfides by Oxygen in Presence of Cobalt(II) and Manganese(II) Salts of 4-Aminobenzoic Acid Supported on Silica Gel. Monatshefte fïżœr Chemie / Chemical Monthly, 135(1), 41-43. doi:10.1007/s00706-003-0102-5Cervilla, A., Corma, A., Fornes, V., Llopis, E., Palanca, P., Rey, F., & Ribera, A. (1994). Intercalation of [MoVIO2(O2CC(S)Ph2)2]2- in a Zn(II)-Al(III) Layered Double Hydroxide Host: A Strategy for the Heterogeneous Catalysis of the Air Oxidation of Thiols. Journal of the American Chemical Society, 116(4), 1595-1596. doi:10.1021/ja00083a065Saxena, A., Kumar, A., & Mozumdar, S. (2007). Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical, 269(1-2), 35-40. doi:10.1016/j.molcata.2006.12.042Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414uArcadi, A. (2008). Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chemical Reviews, 108(8), 3266-3325. doi:10.1021/cr068435dHashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436xGorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430gFĂŒrstner, A. (2009). Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chemical Society Reviews, 38(11), 3208. doi:10.1039/b816696jShen, H. C. (2008). Recent advances in syntheses of heterocycles and carbocycles via homogeneous gold catalysis. Part 1: Heteroatom addition and hydroarylation reactions of alkynes, allenes, and alkenes. Tetrahedron, 64(18), 3885-3903. doi:10.1016/j.tet.2008.01.081Hashmi, A. S. K., & Rudolph, M. (2008). Gold catalysis in total synthesis. Chemical Society Reviews, 37(9), 1766. doi:10.1039/b615629kMuzart, J. (2008). Gold-catalysed reactions of alcohols: isomerisation, inter- and intramolecular reactions leading to C–C and C–heteroatom bonds. Tetrahedron, 64(25), 5815-5849. doi:10.1016/j.tet.2008.04.018Hutchings, G. J. (2008). Supported gold and gold palladium catalysts for selective chemical synthesis. Catalysis Today, 138(1-2), 9-14. doi:10.1016/j.cattod.2008.04.029Widenhoefer, R. A., & Han, X. (2006). Gold-Catalyzed Hydroamination of C–C Multiple Bonds. European Journal of Organic Chemistry, 2006(20), 4555-4563. doi:10.1002/ejoc.200600399Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8Haruta, M. (1997). Catalysis Surveys from Japan, 1(1), 61-73. doi:10.1023/a:1019068728295A. Corma , H.Garcia, Supported gold nanoparticles as oxidation catalysts from Nanoparticles and Catalysis, 2008, 389. Editor: D. AstrucC. Della Pina , E.Falletta, M.Rossi, Gold nanoparticles-catalyzed oxidations in organic chemistry, ibid, p. 427C. Louis , Gold nanoparticles: recent advances in CO oxidation, ibid, pp. 475–503Carrettin, S., ConcepciĂłn, P., Corma, A., LĂłpez Nieto, J. M., & Puntes, V. F. (2004). Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude. Angewandte Chemie International Edition, 43(19), 2538-2540. doi:10.1002/anie.200353570Budroni, G., & Corma, A. (2006). Gold–Organic–Inorganic High-Surface-Area Materials as Precursors of Highly Active Catalysts. Angewandte Chemie International Edition, 45(20), 3328-3331. doi:10.1002/anie.200600552The pair reduced l-glutathione/oxidized l-glutathione (G–SH/G–SS–G) is the major intracellular redox bufferZhang, X., & Corma, A. (2008). Supported Gold(III) Catalysts for Highly Efficient Three-Component Coupling Reactions. Angewandte Chemie International Edition, 47(23), 4358-4361. doi:10.1002/anie.200800098Jenner, E. L., & Lindsey, R. V. (1961). Syntheses by Free-radical Reactions. XIII. Reactions of Thiyl Radicals with Olefins. Journal of the American Chemical Society, 83(8), 1911-1915. doi:10.1021/ja01469a031Handbook of Chemistry and Physics, 82nd ed. CRC Press, New York, 2001, p 9–52–9–63Buettner, G. R. (1987). Spin Trapping: ESR parameters of spin adducts 1474 1528V. Free Radical Biology and Medicine, 3(4), 259-303. doi:10.1016/s0891-5849(87)80033-3Grirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401Cullis, C. F., Hopton, J. D., Swan, C. J., & Trimm, D. L. (2007). Oxidation of thiols in gas-liquid systems. II. Reaction in the presence of added metal catalysts. Journal of Applied Chemistry, 18(11), 335-339. doi:10.1002/jctb.5010181105the amount of water formed was estimated by the Karl-Fisher methodCollet, J.-F., & Bardwell, J. C. A. (2002). Disulfides out of thin air. Nature Structural Biology, 9(1), 2-3. doi:10.1038/nsb0102-

    Chirality transfer in metal-­‐catalysed intermolecular addition reactions involving allenes

    Get PDF
    Allene chemistry in the presence of transition metal complexes is nowadays a very important topic that underpins many challenges and advances in organic synthesis. The amount of research articles covering new transformations of allenes is vast and the development of enantioselective reactions involving allenes has flourished in the last 10-15 years. In this review we cover three important topics in allene chemistry that we feel are timely appropriate for this special issue celebrating the work of Prof Trost: the metal-catalysed reactions involving chirality transfer from chiral allenes to products; the analysis of the possible racemization processes that have been observed in the interaction of some metals with allenes; and the chirality transfer using racemic allenes in reactions catalysed by metal complexes bearing chiral ligands to produce enantioriched products. We have focussed the review on intermolecular addition reactions as they are still much less explored than the intramolecular version

    Mechanistic Studies of Ethylene Hydrophenylation Catalyzed by Bipyridyl Pt(II) Complexes

    Get PDF
    This article discusses mechanistic studies of ethylene hydrophenylation catalyzed by bipyridyl Pt(II) complexes

    Strong Electronic and Counterion Effects on Geminal Digold Formation and Reactivity as Revealed by Gold(I)-Aryl Model Complexes

    Get PDF
    Die geminale Diaurierung von [Ph3PAu(Aryl)]‐Komplexen wurde als Modell untersucht, um Einblick in die intermediĂ€re Bildung von geminalen diaurierten Gold(I)‐Vinylkomplexen in der Katalyse zu gewinnen (siehe Schema). Die Ergebnisse tragen zum VerstĂ€ndnis der Faktoren bei, die die StabilitĂ€t, ReaktivitĂ€t und Dynamik dieser metallorganischen Zwischenstufen bestimmen

    Transmetalation between Au(I) and Sn(IV) complexes. The reaction mechanism in non-coordinating and coordinating polar solvents.

    Get PDF
    Some novel gold(I) derivatives of the type [LAuCl] (L = DIC, PPh3, NHCs) have been synthesized and characterized. The products of the transmetalation reaction between these species and tributyl-phenylethynylstannane have been isolated and characterized. An exhaustive kinetic study on the transmetalation reaction has also been carried out in CHCl3 and CH3CN. The experimental results were discussed in terms of the electronic and steric characteristics of the ligands and an interpretation of the peculiar influence of different solvents on the reaction rates was propose
    • 

    corecore