104 research outputs found

    Preoperative risk stratification of lymph node metastasis for non-functional pancreatic neuroendocrine neoplasm: An international dual-institutional study

    Get PDF
    BACKGROUND: /Objectives: Although the presence of lymph node metastasis (LNM) defines malignant potential, preoperative prediction of LNM has not been established for non-functional pancreatic neuroendocrine neoplasm (NF-PNEN). We sought to develop a prediction system using only preoperatively available factors that would stratify the risk of LNM for NF-PNEN. METHODS: We retrospectively reviewed patients who underwent R0/1 resection of NF-PNEN at Kyoto University (2007-2019) and the University of California, San Francisco (2010-2019). Risk stratification of LNM was developed using preoperative factors by the logistic regression analysis. Long-term outcomes were compared across the risk groups. RESULTS: A total of 131 patients were included in this study. Lymph nodes were pathologically examined in 116 patients, 23 (20%) of whom had LNM. Radiological tumor size [1.5-3.5 cm (odds ratio: 13.5, 95% confidence interval: 1.77-398) and >3.5 cm (72.4, 9.06-2257) against ≤1.5 cm], <50% cystic component (8.46 × 10^6, 1.68 × 10^106-), and dilatation of main pancreatic duct ≥5 mm (31.2, 3.94-702) were independently associated with LNM. When patients were classified as the low-risk (43 patients), intermediate-risk (44 patients), and high-risk groups (29 patients), proportions of LNM differed significantly across the groups (0%, 14%, and 59%, respectively). Recurrence-free survival (RFS) of the low- and intermediate-risk groups were significantly better than that of the high-risk group (5-year RFS rates of 92.2%, 85.4%, and 47.1%, respectively). CONCLUSIONS: The prediction system using preoperative radiological factors stratifies the risk of LNM for NF-PNEN. This stratification helps to predict malignant potential and determine the surgical procedure and necessity of regional lymphadenectomy

    Safety & efficacy of lifileucel (LN-144) tumor infiltrating lymphocyte therapy in metastatic melanoma patients after progression on multiple therapies – independent review committee data update

    Get PDF
    Treatment options are limited for patients with advanced melanoma who have progressed on checkpoint inhibitors and targeted therapies such as BRAF/MEK inhibitors (if BRAF-V600E mutated). Adoptive cell therapy utilizing tumor-infiltrating lymphocytes (TIL) has shown antitumor efficacy with durable responses in heavily pretreated melanoma patients. Safety and efficacy of lifileucel, a centrally manufactured cryopreserved autologous TIL therapy assessed by both investigator and an independent review committee (IRC), are presented

    Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alterations in gene expression in peripheral blood cells have been shown to be sensitive to the presence and extent of coronary artery disease (CAD). A non-invasive blood test that could reliably assess obstructive CAD likelihood would have diagnostic utility.</p> <p>Results</p> <p>Microarray analysis of RNA samples from a 195 patient Duke CATHGEN registry case:control cohort yielded 2,438 genes with significant CAD association (p < 0.05), and identified the clinical/demographic factors with the largest effects on gene expression as age, sex, and diabetic status. RT-PCR analysis of 88 CAD classifier genes confirmed that diabetic status was the largest clinical factor affecting CAD associated gene expression changes. A second microarray cohort analysis limited to non-diabetics from the multi-center PREDICT study (198 patients; 99 case: control pairs matched for age and sex) evaluated gene expression, clinical, and cell population predictors of CAD and yielded 5,935 CAD genes (p < 0.05) with an intersection of 655 genes with the CATHGEN results. Biological pathway (gene ontology and literature) and statistical analyses (hierarchical clustering and logistic regression) were used in combination to select 113 genes for RT-PCR analysis including CAD classifiers, cell-type specific markers, and normalization genes.</p> <p>RT-PCR analysis of these 113 genes in a PREDICT cohort of 640 non-diabetic subject samples was used for algorithm development. Gene expression correlations identified clusters of CAD classifier genes which were reduced to meta-genes using LASSO. The final classifier for assessment of obstructive CAD was derived by Ridge Regression and contained sex-specific age functions and 6 meta-gene terms, comprising 23 genes. This algorithm showed a cross-validated estimated AUC = 0.77 (95% CI 0.73-0.81) in ROC analysis.</p> <p>Conclusions</p> <p>We have developed a whole blood classifier based on gene expression, age and sex for the assessment of obstructive CAD in non-diabetic patients from a combination of microarray and RT-PCR data derived from studies of patients clinically indicated for invasive angiography.</p> <p>Clinical trial registration information</p> <p>PREDICT, Personalized Risk Evaluation and Diagnosis in the Coronary Tree, <url>http://www.clinicaltrials.gov</url>, <a href="http://www.clinicaltrials.gov/ct2/show/NCT00500617">NCT00500617</a></p

    Regulation of skeletal muscle oxidative capacity and insulin signaling by the Mitochondrial Rhomboid Protease PARL

    Get PDF
    Type 2 diabetes mellitus (T2DM) and aging are characterized by insulin resistance and impaired mitochondrial energetics. In lower organisms, remodeling by the protease pcp1 (PARL ortholog) maintains the function and lifecycle of mitochondria. We examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. PARL mRNA and mitochondrial mass were both reduced in elderly subjects and in subjects with T2DM. Muscle knockdown of PARL in mice resulted in malformed mitochondrial cristae, lower mitochondrial content, decreased PGC1&alpha; protein levels, and impaired insulin signaling. Suppression of PARL protein in healthy myotubes lowered mitochondrial mass and insulin-stimulated glycogen synthesis and increased reactive oxygen species production. We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM.<br /

    Going Deeper: Metagenome of a Hadopelagic Microbial Community

    Get PDF
    The paucity of sequence data from pelagic deep-ocean microbial assemblages has severely restricted molecular exploration of the largest biome on Earth. In this study, an analysis is presented of a large-scale 454-pyrosequencing metagenomic dataset from a hadopelagic environment from 6,000 m depth within the Puerto Rico Trench (PRT). A total of 145 Mbp of assembled sequence data was generated and compared to two pelagic deep ocean metagenomes and two representative surface seawater datasets from the Sargasso Sea. In a number of instances, all three deep metagenomes displayed similar trends, but were most magnified in the PRT, including enrichment in functions for two-component signal transduction mechanisms and transcriptional regulation. Overrepresented transporters in the PRT metagenome included outer membrane porins, diverse cation transporters, and di- and tri-carboxylate transporters that matched well with the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. The most dramatic adaptational feature of the PRT microbes appears to be heavy metal resistance, as reflected in the large numbers of transporters present for their removal. As a complement to the metagenome approach, single-cell genomic techniques were utilized to generate partial whole-genome sequence data from four uncultivated cells from members of the dominant phyla within the PRT, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Planctomycetes. The single-cell sequence data provided genomic context for many of the highly abundant functional attributes identified from the PRT metagenome, as well as recruiting heavily the PRT metagenomic sequence data compared to 172 available reference marine genomes. Through these multifaceted sequence approaches, new insights have been provided into the unique functional attributes present in microbes residing in a deeper layer of the ocean far removed from the more productive sun-drenched zones above

    The James Webb Space Telescope Mission: Optical Telescope Element Design, Development, and Performance

    Full text link
    The James Webb Space Telescope (JWST) is a large, infrared space telescope that has recently started its science program which will enable breakthroughs in astrophysics and planetary science. Notably, JWST will provide the very first observations of the earliest luminous objects in the Universe and start a new era of exoplanet atmospheric characterization. This transformative science is enabled by a 6.6 m telescope that is passively cooled with a 5-layer sunshield. The primary mirror is comprised of 18 controllable, low areal density hexagonal segments, that were aligned and phased relative to each other in orbit using innovative image-based wavefront sensing and control algorithms. This revolutionary telescope took more than two decades to develop with a widely distributed team across engineering disciplines. We present an overview of the telescope requirements, architecture, development, superb on-orbit performance, and lessons learned. JWST successfully demonstrates a segmented aperture space telescope and establishes a path to building even larger space telescopes.Comment: accepted by PASP for JWST Overview Special Issue; 34 pages, 25 figure

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Author correction : roadmap for naming uncultivated archaea and bacteria

    Get PDF
    Correction to: Nature Microbiology https://doi.org/10.1038/s41564-020-0733-x , published online 8 June 2020. In the version of this Consensus Statement originally published, Pablo Yarza was mistakenly not included in the author list. Also, in Supplementary Table 1, Alexander Jaffe was missing from the list of endorsees. These errors have now been corrected and the updated Supplementary Table 1 is available online

    Roadmap for naming uncultivated Archaea and Bacteria

    Get PDF
    The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as ‘type material’, thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity
    corecore