2,317 research outputs found

    Morphine activates neuroinflammation in a manner parallel to endotoxin

    Get PDF
    Opioids create a neuroinflammatory response within the CNS, compromising opioid-induced analgesia and contributing to various unwanted actions. How this occurs is unknown but has been assumed to be via classic opioid receptors. Herein, we provide direct evidence that morphine creates neuroinflammation via the activation of an innate immune receptor and not via classic opioid receptors. We demonstrate that morphine binds to an accessory protein of Toll-like receptor 4 (TLR4), myeloid differentiation protein 2 (MD-2), thereby inducing TLR4 oligomerization and triggering proinflammation. Small-molecule inhibitors, RNA interference, and genetic knockout validate the TLR4/MD-2 complex as a feasible target for beneficially modifying morphine actions. Disrupting TLR4/MD-2 protein–protein association potentiated morphine analgesia in vivo and abolished morphine-induced proinflammation in vitro, the latter demonstrating that morphine-induced proinflammation only depends on TLR4, despite the presence of opioid receptors. These results provide an exciting, nonconventional avenue to improving the clinical efficacy of opioids.Xiaohui Wang, Lisa C. Loram, Khara Ramos, Armando J. de Jesus, Jacob Thomas, Kui Cheng, Anireddy Reddy, Andrew A. Somogyi, Mark R. Hutchinson, Linda R. Watkins and Hang Yi

    The use of yeast inoculation in fermentation for port production; effect on total potential ethyl carbamate

    Get PDF
    A commercial wine yeast Saccharomyces cerevisiae UCD 522 (pre-cultured in the presence of certain mass-labelled amino acids) was inoculated into a port must which was then allowed to ferment under controlled conditions of temperature and agitation. The influence of potential ethyl carbamate (EC) precursor formed due to yeast pre-culture, upon total potential EC levels was studied at various stages of fermentation. Pre-culture accumulation did not give rise to detectable levels of EC precursor during port fermentation

    Cosmological Imprints of Pre-Inflationary Particles

    Full text link
    We study some of the cosmological imprints of pre-inflationary particles. We show that each such particle provides a seed for a spherically symmetric cosmic defect. The profile of this cosmic defect is fixed and its magnitude is linear in a single parameter that is determined by the mass of the pre-inflationary particle. We study the CMB and peculiar velocity imprints of this cosmic defect and suggest that it could explain some of the large scale cosmological anomalies.Comment: 31 pages, 7 figure

    The complement system in neurodegenerative diseases

    Get PDF
    Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the ‘classical’ neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases

    Dynamics in the satellite system of Triangulum: Is AndXXII a dwarf satellite of M33?

    Full text link
    We present results from a spectroscopic survey of the dwarf spheroidal And XXII and the two extended clusters EC1 and EC2. These three objects are candidate satellites of the Triangulum galaxy, M33, which itself is likely a satellite of M31. We use the DEep Imaging Multi-Object Spectrograph mounted on the Keck-II telescope to derive radial velocities for candidate member stars of these objects and thereby identify the stars that are most likely actual members. Eleven most probable stellar members (of 13 candidates) are found for AndXXII. We obtain an upper limit of sigma_v < 6.0 km s-1 for the velocity dispersion of AndXXII, [Fe/H] ~ -1.6 for its metallicity, and 255pc for the Plummer radius of its projected density profile. We construct a colour magnitude diagram for AndXXII and identify both the red giant branch and the horizontal branch. The position of the latter is used to derive a heliocentric distance to And XXII of 853 pm 26 kpc. The combination of the radial velocity, distance, and angular position of AndXXII indicates that it is a strong candidate for being the first known satellite of M33 and one of the very few examples of a galactic satellite of a satellite. N-body simulations imply that this conclusion is unchanged even if M31 and M33 had a strong encounter in the past few Gyr. We test the hypothesis that the extended clusters highlight tidally stripped galaxies by searching for an excess cloud of halo-like stars in their vicinity. We find such a cloud for the case of EC1 but not EC2. The three objects imply a dynamical mass for M33 that is consistent with previous estimates.Comment: 14 pages, 14 figures, revised for MNRAS publicatio

    ‘Working with the media taught us a lot’: Understanding The Guardian’s Katine initiative

    Get PDF
    One of the more important ventures in the world of media and development over the past decade has been The Guardian newspaper’s ‘Katine’ project in Uganda. The newspaper, with funding from its readers and Barclays Bank, put more than 2.5 million pounds into a Ugandan sub-county over the course of 4 years. The project was profiled on a dedicated Guardian microsite, with regular updates in the printed edition of the newspaper. In this article, I look at the relationship that developed between journalists and the non-governmental organisation and show that the experience was both disorienting and reorienting for the development project that was being implemented. The scrutiny of the project that appeared on the microsite disoriented the non-governmental organisation, making its work the subject of public criticism. The particular issues explored by journalists also reoriented what the non-governmental organisation did on the ground. I also point to the ways the relationship grew more settled as the project moved along, suggesting the amount of work that sometimes goes into what is often characterised as the relatively uncritical relationship between journalists and non-governmental organisations

    Methane in the atmosphere of the transiting hot Neptune GJ436b?

    Get PDF
    We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5 and 8 μ8~\mum obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, HST and ground-based V,I,HV, I, H and KsK_s published observations, the range 0.5−10 μ0.5-10~\mum can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the dataset. Representative climate models were calculated by using a three-dimensional, pseudo-spectral general circulation model with idealised thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio calculated, linelist for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water and other molecules. No clear evidence of carbon monoxide and dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesised to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.Comment: 19 pages, 10 figures, 1 table, Astrophysical Journal in pres

    Coupled dark matter-dark energy in light of near Universe observations

    Get PDF
    Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified --and thus can be probed by a combination of tests for the expansion history and the growth of structure--, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inconsistency between reconstructed expansion history and growth may not uniquely indicate deviations from GR. Our low redshift constraints arise from cosmic velocities, redshift space distortions and dark matter abundance in galaxy voids. We find that current data constrain the dimensionless coupling to be |xi|<0.2, but prospects from forthcoming data are for a significant improvement. Future, precise measurements of the Hubble constant, combined with high-precision constraints on the growth of structure, could provide the key to rule out dark coupling models which survive other tests. We shall exploit as well weak equivalence principle violation arguments, which have the potential to highly disfavour a broad family of coupled models.Comment: 34 pages, 6 figures; changes to match published versio
    • …
    corecore