130 research outputs found

    Effect of ambient temperature during acute aerobic exercise on short-term appetite, energy intake, and plasma acylated ghrelin in recreationally active males

    Get PDF
    Ambient temperature during exercise may affect energy intake regulation. Compared with a temperate (20 °C) environment, 1 h of running followed by 6 h of rest tended to decrease energy intake from 2 ad libitum meals in a hot (30 °C) environment but increase energy intake in a cool (10 °C) environment (p = 0.08). Core temperature changes did not appear to mediate this trend; whether acylated ghrelin is involved is unclear. Further research is warranted to clarify these findings

    The Acute Effects of Swimming on Appetite, Food Intake, and Plasma Acylated Ghrelin

    Get PDF
    Swimming may stimulate appetite and food intake but empirical data are lacking. This study examined appetite, food intake, and plasma acylated ghrelin responses to swimming. Fourteen healthy males completed a swimming trial and a control trial in a random order. Sixty min after breakfast participants swam for 60 min and then rested for six hours. Participants rested throughout the control trial. During trials appetite was measured at 30 min intervals and acylated ghrelin was assessed periodically (0, 1, 2, 3, 4, 6, and 7.5 h. N = 10). Appetite was suppressed during exercise before increasing in the hours after. Acylated ghrelin was suppressed during exercise. Swimming did not alter energy or macronutrient intake assessed at buffet meals (total trial energy intake: control 9161 kJ, swimming 9749 kJ). These findings suggest that swimming stimulates appetite but indicate that acylated ghrelin and food intake are resistant to change in the hours afterwards

    Exercise and ghrelin. A narrative overview of research

    Get PDF
    Since its discovery in 1999, ghrelin has been implicated in a multiplicity of physiological activities. Most notably, ghrelin has an important influence on energy metabolism and after the identification of its potent appetite stimulating effects ghrelin has been termed the ‘hunger hormone.’ Exercise is a stimulus which has a significant impact on energy homeostasis and consequently a substantial body of research has investigated the interaction between exercise and ghrelin. This narrative review provides an overview of research relating to the acute and chronic effects of exercise on circulating ghrelin (acylated, unacylated and total). To enhance study comparability, the scope of this review is limited to research undertaken in adult humans and consequently studies involving children and animals are not discussed. Although there is significant ambiguity within much of the early research, our review suggests that acute exercise transiently interferes with the production of acylated ghrelin. Furthermore, the consensus of evidence indicates that exercise training does not influence circulating ghrelin independent of weight loss. Additional research is needed to verify and extend the available literature, particularly by uncovering the mechanisms governing acute exercise-related changes and characterising responses in other populations such as females, older adults, and the obese

    Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in normoxic and hypoxic conditions.

    Get PDF
    This study investigated the effects of continuous moderate-intensity exercise (MIE) and high-intensity interval exercise (HIIE) in combination with short exposure to hypoxia on appetite and plasma concentrations of acylated ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Twelve healthy males completed four, 2.6 h trials in a random order: 1) MIE-normoxia, 2) MIE-hypoxia, 3) HIIE-normoxia, and 4) HIIE-hypoxia. Exercise took place in an environmental chamber. During MIE, participants ran for 50 min at 70% of altitude-specific maximal oxygen uptake ( 2max) and during HIIE performed 6 x 3 min running at 90% 2max interspersed with 6 x 3 min active recovery at 50% 2max with a 7 min warm-up and cool-down at 70% 2max (50 min total). In hypoxic trials, exercise was performed at a simulated altitude of 2,980 m (14.5% O2). Exercise was completed after a standardised breakfast. A second meal standardised to 30% of participants’ daily energy requirements was provided 45 min after exercise. Appetite was suppressed more in hypoxia than normoxia during exercise, post-exercise, and for the full 2.6 h trial period (linear mixed modelling, p 0.05). These findings demonstrate that short exposure to hypoxia causes suppressions in appetite and plasma acylated ghrelin concentrations. Furthermore, appetite responses to exercise do not appear to be influenced by exercise modality

    Appetite and Energy Intake Responses to Acute Energy Deficits in Females versus Males.

    Get PDF
    Purpose: To explore whether compensatory responses to acute energy deficits induced by exercise or diet differ by sex. Methods: In experiment one, twelve healthy women completed three 9 h trials (control, exercise-induced (Ex-Def) and food restriction induced energy deficit (Food-Def)) with identical energy deficits being imposed in the Ex-Def (90 min run, ~70% of VO2 max) and Food-Def trials. In experiment two, 10 men and 10 women completed two 7 h trials (control and exercise). Sixty min of running (~70% of VO2 max) was performed at the beginning of the exercise trial. Participants rested throughout the remainder of the exercise trial and during the control trial. Appetite ratings, plasma concentrations of gut hormones and ad libitum energy intake were assessed during main trials. Results: In experiment one, an energy deficit of ~3500 kJ induced via food restriction increased appetite and food intake. These changes corresponded with heightened concentrations of plasma acylated ghrelin and lower peptide YY3-36. None of these compensatory responses were apparent when an equivalent energy deficit was induced by exercise. In experiment two, appetite ratings and plasma acylated ghrelin concentrations were lower in exercise than control but energy intake did not differ between trials. The appetite, acylated ghrelin and energy intake response to exercise did not differ between men and women. Conclusions: Women exhibit compensatory appetite, gut hormone and food intake responses to acute energy restriction but not in response to an acute bout of exercise. Additionally, men and women appear to exhibit similar acylated ghrelin and PYY3-36 responses to exercise-induced energy deficits. These findings advance understanding regarding the interaction between exercise and energy homeostasis in women

    Individual variation in hunger, energy intake and ghrelin responses to acute exercise

    Get PDF
    Purpose This study aimed to characterize the immediate and extended effect of acute exercise on hunger, energy intake, and circulating acylated ghrelin concentrations using a large data set of homogenous experimental trials and to describe the variation in responses between individuals. Methods Data from 17 of our group's experimental crossover trials were aggregated yielding a total sample of 192 young, healthy males. In these studies, single bouts of moderate to high-intensity aerobic exercise (69% ± 5% V˙O2 peak; mean ± SD) were completed with detailed participant assessments occurring during and for several hours postexercise. Mean hunger ratings were determined during (n = 178) and after (n = 118) exercise from visual analog scales completed at 30-min intervals, whereas ad libitum energy intake was measured within the first hour after exercise (n = 60) and at multiple meals (n = 128) during the remainder of trials. Venous concentrations of acylated ghrelin were determined at strategic time points during (n = 118) and after (n = 89) exercise. Results At group level, exercise transiently suppressed hunger (P < 0.010, Cohen's d = 0.77) but did not affect energy intake. Acylated ghrelin was suppressed during exercise (P < 0.001, Cohen's d = 0.10) and remained significantly lower than control (no exercise) afterward (P < 0.024, Cohen's d = 0.61). Between participants, there were notable differences in responses; however, a large proportion of this spread lay within the boundaries of normal variation associated with biological and technical assessment error. Conclusion In young men, acute exercise suppresses hunger and circulating acylated ghrelin concentrations with notable diversity between individuals. Care must be taken to distinguish true interindividual variation from random differences within normal limits

    25-hydroxyvitamin D concentration is inversely associated with serum MMP-9 in a cross-sectional study of African American ESRD patients

    Get PDF
    BACKGROUND: Circulating 25-hydroxyvitamin D [25(OH)D] concentration is inversely associated with peripheral arterial disease and hypertension. Vascular remodeling may play a role in this association, however, data relating vitamin D level to specific remodeling biomarkers among ESRD patients is sparse. We tested whether 25(OH)D concentration is associated with markers of vascular remodeling and inflammation in African American ESRD patients.METHODS: We conducted a cross-sectional study among ESRD patients receiving maintenance hemodialysis within Emory University-affiliated outpatient hemodialysis units. Demographic, clinical and dialysis treatment data were collected via direct patient interview and review of patients records at the time of enrollment, and each patient gave blood samples. Associations between 25(OH)D and biomarker concentrations were estimated in univariate analyses using Pearson's correlation coefficients and in multivariate analyses using linear regression models. 25(OH) D concentration was entered in multivariate linear regression models as a continuous variable and binary variable (&lt;15 ng/ml and =15 ng/ml). Adjusted estimate concentrations of biomarkers were compared between 25(OH) D groups using analysis of variance (ANOVA). Finally, results were stratified by vascular access type.RESULTS: Among 91 patients, mean (standard deviation) 25(OH)D concentration was 18.8 (9.6) ng/ml, and was low (&lt;15 ng/ml) in 43% of patients. In univariate analyses, low 25(OH) D was associated with lower serum calcium, higher serum phosphorus, and higher LDL concentrations. 25(OH) D concentration was inversely correlated with MMP-9 concentration (r = -0.29, p = 0.004). In multivariate analyses, MMP-9 concentration remained negatively associated with 25(OH) D concentration (P = 0.03) and anti-inflammatory IL-10 concentration positively correlated with 25(OH) D concentration (P = 0.04).CONCLUSIONS: Plasma MMP-9 and circulating 25(OH) D concentrations are significantly and inversely associated among ESRD patients. This finding may suggest a potential mechanism by which low circulating 25(OH) D functions as a cardiovascular risk factor

    25-hydroxyvitamin D concentration is inversely associated with serum MMP-9 in a cross-sectional study of African American ESRD patients

    Get PDF
    BACKGROUND: Circulating 25-hydroxyvitamin D [25(OH)D] concentration is inversely associated with peripheral arterial disease and hypertension. Vascular remodeling may play a role in this association, however, data relating vitamin D level to specific remodeling biomarkers among ESRD patients is sparse. We tested whether 25(OH)D concentration is associated with markers of vascular remodeling and inflammation in African American ESRD patients.METHODS: We conducted a cross-sectional study among ESRD patients receiving maintenance hemodialysis within Emory University-affiliated outpatient hemodialysis units. Demographic, clinical and dialysis treatment data were collected via direct patient interview and review of patients records at the time of enrollment, and each patient gave blood samples. Associations between 25(OH)D and biomarker concentrations were estimated in univariate analyses using Pearson's correlation coefficients and in multivariate analyses using linear regression models. 25(OH) D concentration was entered in multivariate linear regression models as a continuous variable and binary variable (&lt;15 ng/ml and =15 ng/ml). Adjusted estimate concentrations of biomarkers were compared between 25(OH) D groups using analysis of variance (ANOVA). Finally, results were stratified by vascular access type.RESULTS: Among 91 patients, mean (standard deviation) 25(OH)D concentration was 18.8 (9.6) ng/ml, and was low (&lt;15 ng/ml) in 43% of patients. In univariate analyses, low 25(OH) D was associated with lower serum calcium, higher serum phosphorus, and higher LDL concentrations. 25(OH) D concentration was inversely correlated with MMP-9 concentration (r = -0.29, p = 0.004). In multivariate analyses, MMP-9 concentration remained negatively associated with 25(OH) D concentration (P = 0.03) and anti-inflammatory IL-10 concentration positively correlated with 25(OH) D concentration (P = 0.04).CONCLUSIONS: Plasma MMP-9 and circulating 25(OH) D concentrations are significantly and inversely associated among ESRD patients. This finding may suggest a potential mechanism by which low circulating 25(OH) D functions as a cardiovascular risk factor

    Markers of fungal translocation are elevated during post-acute sequelae of SARS-CoV-2 and induce NF-κB signaling

    Get PDF
    Long COVID, a type of post-acute sequelae of SARS-CoV-2 (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the mechanisms that drive this inflammation remain unknown. Inflammation during acute coronavirus disease 2019 could be exacerbated by microbial translocation (from the gut and/or lung) to blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We did not observe a significant elevation in plasma markers of bacterial translocation during PASC. However, we observed higher levels of fungal translocation - measured as β-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared with those without PASC or SARS-CoV-2-negative controls. The higher β-glucan correlated with higher inflammation and elevated levels of host metabolites involved in activating N-methyl-d-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neurotoxic properties. Mechanistically, β-glucan can directly induce inflammation by binding to myeloid cells (via Dectin-1) and activating Syk/NF-κB signaling. Using a Dectin-1/NF-κB reporter model, we found that plasma from individuals experiencing PASC induced higher NF-κB signaling compared with plasma from negative controls. This higher NF-κB signaling was abrogated by piceatannol (Syk inhibitor). These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC
    corecore