4,710 research outputs found

    A sensitivity analysis for the adequacy assessment of a multi-state physics modeling approach for reliability analysis

    Get PDF
    In this work, a moment-independent Sensitivity Analysis (SA) based on Hellinger distance and Kullback-Leibler divergence is proposed to identify the component of a system most affecting its reliability (Diaconis et al., 1982; Gibbs et al., 2002; Di Maio et al., 2014). This result is used to adequately allocate modeling efforts on the most important component that, therefore, deserves a component-level Multi-State Physics Modeling (MSPM) to be integrated into a system-level model, to estimate the system failure probability

    Quantitative imaging of the complexity in liquid bubbles' evolution reveals the dynamics of film retraction

    Get PDF
    The dynamics and stability of thin liquid films have fascinated scientists over many decades. Thin film flows are central to numerous areas of engineering, geophysics, and biophysics and occur over a wide range of length, velocity, and liquid properties scales. In spite of many significant developments in this area, we still lack appropriate quantitative experimental tools with the spatial and temporal resolution necessary for a comprehensive study of film evolution. We propose tackling this problem with a holographic technique that combines quantitative phase imaging with a custom setup designed to form and manipulate bubbles. The results, gathered on a model aqueous polymeric solution, provide an unparalleled insight into bubble dynamics through the combination of full-field thickness estimation, three-dimensional imaging, and fast acquisition time. The unprecedented level of detail offered by the proposed methodology will promote a deeper understanding of the underlying physics of thin film dynamics

    The first billion years of a warm dark matter universe

    Get PDF
    We present results of cosmological N-body hydrodynamic chemistry simulations of primordial structure growth and evolution in a scenario with warm dark matter (WDM) having a mass of 3 keV (thermal relic) and compare with a model consisting of standard cold dark matter (CDM).We focus on the high-redshift universe (z > 6), where the structure formation process should better reflect the primordial (linear) differences in terms of matter power spectrum. We find that early epochs can be exceptional probes of the dark matter nature. Non-linear WDM power spectra and mass functions are up to 2 dex lower than in CDM and show spreads of factor of a few persisting in the whole first Gyr. Runaway molecular cooling in WDM haloes results severely inhibited because of the damping of power at large k modes and hence cosmic (Populations III and II-I) star formation rate (SFR) is usually suppressed with respect to CDM predictions. Luminous objects formed in a WDM background are very rare at z > 10, due to the sparser and retarded evolution of early WDM minihaloes during the dark ages and their lack can be fitted with a simple analytical formula depending only on magnitude and redshift. Future high-z observations of faint galaxies have the potential to discriminate between CDM and WDM scenarios by means of cosmic stellar mass density and specific SFR, as well. When compared to the effects of alternative cosmologies (e.g. non-Gaussian or dark energy models) or of high-order corrections at large z (e.g. primordial streaming motions or changes in the pristine initial mass function) the ones caused by WDM are definitely more dramatic. \ua9 2014 The Authors

    Reliability assessment of point-absorber wave energy converters

    Get PDF
    Ocean wave energy is a clean and inexhaustible energy resource, capable of providing more than 2 TW of energy supply worldwide. Among all the technologies available to convert wave energy, the point-absorber is one of the most promising solutions today, due to its ease of both fabrication and installation. The floaters of point-absorber WECs (wave energy converters) are generally exposed to harsh marine environments with great uncertainties in environmental loads, which make their reliability assessment quite challenging. In this work, a reliability assessment framework, which combines parametric finite element analysis (FEA) modelling, response surface modelling and reliability analysis, has been developed specifically for the floater of point-absorber WECs. An analytical model of point-absorber WECs is also developed in this work to calculate wave loads and to validate the developed FEA model. After the validation through a series of simulations, the reliability assessment framework has been applied to the NOTC (National Ocean Technology Centre) 10 kW multiple-point-absorber WEC to assess the reliability of the floater, considering the fatigue limit state (FLS). Optimisation of key design components is also performed based on reliability assessment in order to achieve target reliability. The results show that for the considered conditions, the WEC floater is prone to experience fatigue failure before the end of their nominal service life. It is demonstrated that the reliability assessment framework developed in this work is capable of accurately assessing the reliability of WECs and optimising the structure on the basis of reliability

    Quantitative imaging of the complexity in liquid bubbles’ evolution reveals the dynamics of film retraction

    Get PDF
    Thin liquid films: Seeing bubbles in a better light A procedure for imaging the complex fluid dynamics in bubbles could greatly assist efforts to understand and exploit thin liquid films in applications ranging through medicine, industrial chemistry and engineering. Thin liquid films are ubiquitous in nature, found in such varied systems as soap bubbles, biological membranes, detergents, oils, insulation, foods and geological magma. Researchers in Italy led by Biagio Mandracchia at the Institute of Applied Science and Intelligent Systems in Naples, devised a novel holographic phase imaging technique to watch bubbles as they form, develop, burst and retract. The researchers built customized apparatus to create and manipulate the bubbles. The unprecedented level of detail being revealed offers deeper understanding of the physics underlying thin film behavior. Insights into the complex fluid dynamics within bubbles could advance thin film technology for many applications

    Three-loop Monte Carlo simulation approach to Multi-State Physics Modeling for system reliability assessment

    Get PDF
    Multi-State Physics Modeling (MSPM) provides a physics-based semi-Markov modeling framework for a more detailed reliability assessment. In this work, a three-loop Monte Carlo (MC) simulation scheme is proposed to operationalize the MSPM approach, quantifying and controlling the uncertainty affecting the system reliability model. The proposed MC simulation scheme involves three steps: (i) the identification of the system components that deserve MSPM, (ii) the quantification of the uncertainties in the MSPM component models and their propagation onto the system-level model, and (iii) the selection of the most suitable modeling alternative that balances the computational demand for the system model solution and the robustness of the system reliability estimates. A Reactor Protection System (RPS) of a Nuclear Power Plant (NPP) is considered as case study for numerical evaluation

    Effect of Intergalactic Medium on the Observability of Lyman Alpha Emitters during Cosmic Reionization

    Full text link
    We perform a systematic study of how the inhomogeneities in the Inter-Galactic Medium (IGM) affect the observability of Lyman Alpha Emitters (LAEs) around the Epoch of Reionization. We focus on the IGM close to the galaxies as the detailed ionization distribution and velocity fields of this region could significantly influence the scattering of Ly-alpha photons off neutral H atoms as they traverse the IGM after escaping from the galaxy. We simulate the surface brightness (SB) maps and spectra of more than 100 LAEs at z=7.7 as seen by an observer at z=0. To achieve this, we extract the source properties of galaxies and their surrounding IGM from cosmological simulations of box sizes 5-30 Mpc/h and follow the coupled radiative transfer of ionizing and Ly-alpha radiation through the IGM using CRASH-alpha. We find that the simulated SB profiles are extended and their detailed structure is affected by inhomogeneities in the IGM, especially at high neutral fractions. The detectability of LAEs and the fraction of the flux observed depend heavily on the shape of the SB profile and the SB threshold (SB_th) of the observational campaign. Only ultradeep observations (e.g. SB_th ~ 10^-23 ergs/s/cm^2/arcsec^2) would be able to obtain the true underlying mass-luminosity relation and luminosity functions of LAEs. The details of our results depend on whether Ly-alpha photons are significantly shifted in the galaxy to longer wavelengths, the mean ionization fraction in the IGM and the clustering of ionizing sources. These effects can lead to an easier escape of Ly-alpha photons with less scattering in the IGM and a concentrated SB profile similar to the one of a point source. Finally, we show that the SB profiles are steeper at high ionization fraction for the same LAE sample which can potentially be observed from the stacked profile of a large number of LAEs.Comment: 22 pages, 23 figures, 2 tables, Accepted by MNRAS. Minor change

    Modelling energy consumption of network transfers and virtual machine migration

    Get PDF
    Reducing energy consumption has become a key issue for data centres, not only because of economical benefits but also for environmental and marketing reasons. Therefore, assessing their energy consumption requires precise models. In the past years, many models targeting different hardware components, such as CPU, storage and network interface cards (NIC) have been proposed. However, most of them neglect energy consumption related to VM migration. Since VM migration is a network-intensive process, to accurately model its energy consumption we also need energy models for network transfers, comprising their complete software stacks with different energy characteristics. In this work, we present a comparative analysis of the energy consumption of the software stack of two of today's most used NICs in data centres, Ethernet and Infiniband. We carefully design for this purpose a set of benchmark experiments to assess the impact of different traffic patterns and interface settings on energy consumption. Using our benchmark results, we derive an energy consumption model for network transfers. Based on this model, we propose an energy consumption model for VM migration providing accurate predictions for paravirtualised VMs running on homogeneous hosts. We present a comprehensive analysis of our model on different machine sets and compare it with other models for energy consumption of VM migration, showing an improvement of up to 24% in accuracy, according to the NRMSE error metric. © 2015 Elsevier B.V
    • …
    corecore