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Abstract: Multi-State Physics Modeling (MSPM) provides a physics-based semi-

Markov modeling framework for a more detailed reliability assessment. In this work, a 

three-loop Monte Carlo (MC) simulation scheme is proposed to operationalize the 

MSPM approach, quantifying and controlling the uncertainty affecting the system 

reliability model. The proposed MC simulation scheme involves three steps: i) the 

identification of the system components that deserve MSPM, ii) the quantification of 

the uncertainties in the MSPM component models and their propagation onto the 

system-level model, and iii) the selection of the most suitable modeling alternative that 

balances the computational demand for the system model solution and the robustness 

of the system reliability estimates. 

A Reactor Protection System (RPS) of a Nuclear Power Plant (NPP) is considered 

as case study for numerical evaluation. 
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1. INTRODUCTION 

System reliability assessment relies on a model of the system failure process: the 

more accurately the model reproduces the system behavior, the more confident the 

system reliability assessment. Physical knowledge, expert information and data on the 

system behavior are used to build the model and estimate its parameters (Aven & Zio, 

2011; Aven et al., 2014). The uncertainties in the model and parameters can be 

propagated by Monte Carlo (MC) simulation (Zio & Pedroni, 2009; Zio & Pedroni, 

2012; Zhang et al., 2010; Catelani et al., 2015), Bayesian posterior analysis (Zhang & 

Mahadevan, 2001) and Fuzzy methodology (Dubais, 2010; Baraldi et al., 2015a; Garg, 

2013; Garg, 2014). Most commonly, MC simulation is used, consisting in repeatedly 

sampling random values of the inputs from probability distributions (Zio, 2013). 

MSPM is a semi-Markov modeling framework that allows inserting physical 

knowledge on the system failure process, for improving the system reliability 

assessment by accounting for the effects of both the stochastic degradation process and 

the uncertain environmental and operational parameters (Unwin et al., 2011; Di Maio 

et al., 2015; Lin et al., 2015; Wang et al., 2016). 

In this work, a three-loop MC simulation scheme is proposed for MSPM system 

reliability modeling. The proposed MC simulation is made of three steps: i) the 

identification of the components of the system for which a component-level MSPM is 

beneficial, because of the importance of the component for the system unreliability, ii) 

the quantification and propagation of the uncertainty, and iii) the selection of the proper 

modeling details, considering computational demand and robustness of the result.  

The first step is achieved by Sensitivity Analysis (SA), which can be informed in 

three different ways: local, regional and global (Saltelli et al., 2000; Di Maio et al., 

2014b). Global SA, in particular, measures the output uncertainty over the whole 

distributions of the input parameters and can be performed by parametric techniques, 

such as the variance decomposition method (Yu et al., 2010; Saltelli et al., 2008; Cadini 

et al., 2007; Yu et al., 2009; Sobol, 2001) and moment-independent method (Borgonovo, 

2006; Borgonovo et al., 2012; Wei et al., 2013; Cui et al., 2010). The variance-based 
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method measures the part of the output variance that is attributed to the different inputs 

or set of inputs, without resorting to any assumption on the form of the model (Mckay, 

1996; Saltelli et al., 2000, 2008; Rocco et al., 2013; Carlos et al., 2013). The moment-

independent method allows quantifying the average effect of the input parameters on 

the reliability of the system and provides their importance ranking (Zhang et al., 2015).  

In this work, we resort to moment-independent sensitivity measures, such as Hellinger 

distance and Kullback-Leibler divergence (Diaconis et al., 1982; Gibbs et al., 2002), 

for ranking the input variables most affecting the system reliability uncertainty (Di 

Maio et al., 2014b; Hoseyni et al., 2015). 

The second step consists in quantifying the uncertainty in the output of the 

reliability model. The method adopted for this depends on the components modeling 

approach: for binary-state Markov Chain Models (MCMs), the variance of the 

transition failure rate is estimated by Fisher Information Matrix (Kendall et al., 1977; 

Di Maio et al., 2014a; Al-Dahidi et al., 2015; Kumar et al., 2015); for MSPM 

component models, the transition rates uncertainty is propagated and, therefore, 

estimated by MC. 

For the last step, MC simulation is utilized to propagate uncertainties in the system 

model and estimate the confidence intervals of the system unreliability. 

A Reactor Protection System (RPS) of a Nuclear Power Plant (NPP) is considered 

as case study. MCM and MSPM are built for the reliability assessment. The Resistance 

Temperature Detector (RTD) is identified as the most important component. 

Confidence intervals of the system reliability estimates by RPS-MCM are computed 

and compared with those of RPS-MSPM that are obtained by the three-loop MC 

simulation. 

The reminder of the paper is organized as follows. Section 2 describes the RPS 

case study and its MCM reliability model taken as reference. In Section 3, a SA of the 

MCM is performed and the embedded RTD is identified as the component most 

affecting the RPS reliability. RPS-MSPM is, then, built for it. Section 4 compares the 

confidence intervals of the system reliability estimates obtained by MCM and MSPM. 
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In Section 5, conclusions are drawn. 

2. THE REACTOR PROTECTION SYSTEM 

The RPS function is to trigger the NPP emergency shutdown, when an anomaly is 

detected in the measurements of a relevant signal (here assumed to be a temperature 

signal). As shown in Figure 1, the RPS is composed of two redundant channels (A and 

B). Each channel consists of one signal sensor (S-A and S-B), one Bistable Processor 

Logic (BPL) subsystem (BPL-A and BPL-B), and one Local Coincidence Logic (LCL) 

subsystem (LCL-A and LCL-B). UsuallyIt is worth mentioning that, practically, 

redundancy is applied tofactors 2, 3 or 4 for sensors and signal processing units are 

envisaged by currentof RPS design solutions. However, with respect to the 

development of the methods proposed in the paper, we do not consider this for 

keepingwithout loss of generality and limiting the modeling complexity at a minimum, 

without loss of generalitywe will assume the RPS of Fig. 1 to be the reference case 

study (without redundancy). Furthermore, the sensorsHereafter, we also assume S-A 

and S-B are considered to be RTDs, because ofgiven the importancet role of these 

components that RTDs play in NPPs digital Instrumentation and Control (I&C) systems 

(Yun et al., 2012; Baraldi et al., 2015b). On one hand, RTDs are safety -critical 

components (with large failure rates and corresponding standard deviations, with 

respect to the other RPS components),and their whose effectiveness ofin promptly 

detectiong of anomalous temperatures changes is very important for greatly affects the 

plant operators forcapability to monitoring the NPP operational conditions and to take 

counteracting measures to avoid system failure (Hashemian, 2011). The On the other 

hand, RTDs reliability and accuracy of RTDs is important for allow  controlling the 

NPP power rate with confidence, guaranteeing the larger power rates with sufficient 

enoughsafety margins from the system failure domain (hence, better plant economics) 

(Yun et al., 2012; Wang et al., 2016). 

If any one of the two redundant measured signals exceeds a triggering threshold 

value, a Partial Tripping Signal (PTS) is sent to the corresponding BPL. The signal 

processing activates only if both channels produce the PTS: each PTS from a BPL is 
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sent to both LCL-A and LCL-B, which process information by an “AND” gate. In other 

words, an Emergency Shutdown Signal (ESS) is produced only when receiving two 

PTSs from different BPLs; ESSs, then, activate the Reactor Trip Breaker (RTB), when 

at least one ESS is triggered, i.e., the information is processed by an “OR” gate. Once 

the RTB is activated, the power supply system and Control Rod Drive Mechanism 

(CRDM) which are connected with the RTB activate to control the power of the reactor. 

BPL-A BPL-B

LCL-A LCL-B

1
2

S-A S-B

Power supply 

system
CRDM

RTB

BPL Module

LCL Module

RTB Module  

Fig. 1 RPS scheme (Wang et al., 2015) 

According to the RPS scheme of Fig. 1, three modules are identified: 

 The BPL Module consists of two groups of components: sensor and BPL (i.e., 

“S-A and BPL-A” and “S-B and BPL-B”); these components are connected 

in series and their failure effects on the system can be combined. 

 The LCL Module consists of the two LCLs (i.e., LCL-A and LCL-B); since 

the ESS is triggered only when both LCLs simultaneously receive two PTSs 

from the two BPLs, this module is highly dependent of the BPL module. 

 The RTB Module. 
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2.1 The RPS-MCM 

In this Section, a binary-state MCM is built as reference for the reliability 

assessment of the RPS. To do this, intra- and inter-module states leading to the system 

failure are identified. Intra-module states refer to events leading to the system failure 

that concerns components belonging to the same module; inter-module states relate to 

system failures from combined component events in different modules. 

Fig. 2 shows the RPS-MCM, whose states (listed in Table 1) are grouped into four 

categories that relate to the intra- and inter-module distinction. The following 

assumptions have been made for the subsequent quantitative analysis: 

 Transitions can occur from the system functioning state (state 0) to any of the 

absorbing failure states of the intra-module category and from the 

intermediate state (state 3) to any of the absorbing states of the inter-module 

category. The transition rates are taken from public databases (US: EPRI, 

2008; IAEA, 1992) and reported in Table 2. 

 No repairs are considered. 

Table 1 Component states 

State Description 

0 RPS functioning state. 

1 Either one of the RTD sensors fails. 

2 Either one of the BPLs fails to send out PTSs. 

3 Either one of the LCLs fails to produce the ESS. 

4 RTB fails. 

5 One LCL has failed and, then, one sensor fails. 

6 One LCL has failed and, then, one BPL fails. 

7 Both LCLs fail to produce the ESS. 

8 One LCL has failed and, then, the RTB fails. 

9 Common cause failure of BPL-A and BPL-B. 

10 Common cause failure of LCL-A and LCL-B. 

 

Table 2 Transition rates (US: EPRI, 2008; IAEA, 1992) 

Symbol Description Value (/yr) 

λS RTD failure rate 8.760e-1 (US: EPRI, 2008) 

λB BPL failure rate 8.760e-3 (US: EPRI, 2008) 

λL LCL failure rate  4.380e-2 (US: EPRI, 2008) 

λR RTB failure rate 3.767e-4 (IAEA, 1992) 

β Common cause factor 0.1 

λBS BPL self-fault failure rate (1- β)*λB=7.884e-3 

λLS LCL self-fault failure rate (1- β)*λL=3.942e-2 
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λBC 
BPLs common cause failure 

rate 

β*λB=8.760e-4 

λLC 
LCLs common cause failure 

rate 

β*λL=4.380e-3 

1

2

0

10

BPL module 

states

7

3 4

9 LC

BC R

R

2 S
2 S

8

6

5

LCL module 

states

RTB module 

states

Inter-modules 

states

2 BS

2 BS

2 LS

LS

 

Fig. 2 The RPS-MCM where states are grouped according to their intra-module and inter-modules 

characteristics  

The RPS unreliability P(t), and the individual modules unreliabilities PBPL(t), 

PLCL(t), PRTB(t) and PInter-modules(t) are presented in Fig. 3. A visual analysis of the 

unreliability curves shows that most of the system unreliability P(t) is contributed by 

the BPL, that is to say, the absorbing states of the BPL module most contribute to the 

system unreliability. 
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Fig. 3 Unreliability curves of RPS and its modules  

2.2 Uncertainty analysis 

If not provided by public databases, resorting to Fisher Information (Kendall et al., 

1977; Di Maio et al., 2014a), the The standard deviation values of the transition rates 

of Table 2 are either provided by public databases or can be estimated by resorting to 

Fisher Information (Kendall et al., 1977; Di Maio et al., 2014a). The procedure for 

this(that is hereafter described with reference to the RTD, whose failure rate standard 

deviation is not provided in (US: EPRI, 2008)) consists in: 

 Simulation of life tests. 

With the mission time T=6yr (Wang et al., 2016) as the end of the right-censored 

life tests, we randomly sample NR=1000 trials of RTD failure times from an exponential 

distribution with constant transition rate λS (Table 2). If the sampled time exceeds the 

mission time T=6yr, the test is considered right-censored (Zio, 2007). 

 Estimation of the standard deviation ˆ
S of λS. 

The variance of λS can be estimated based on the observed Fisher information 

(Kendall et al., 1977). The Fisher Information Matrix is defined from the Maximum 

Likelihood function or its LogLikelihood (Kendall et al., 1977), and can be estimated 

by (Zio, 2007): 

      ˆ ˆ ˆlog , log ; ;S T i S j S

i j

L t f t R t  
 

  
 
   (1) 

Formattato: Evidenziato



9 
 

where i and j are the RTD failure times before T and the times right-censored by T, 

respectively, and  ˆ;T i Sf t   and  ˆ;j SR t   are the RTD failure time probability density 

function (pdf) and the RTD reliability: 

   ˆˆ ˆ; S it

T i S Sf t e
  

   (2) 

   ˆˆ; S it

j SR t e
 

  (3) 

With respect to the observable random failure time t, the Fisher Information Matrix 

 ˆ
SJ   can be expressed as: 

  
 

2
ˆlog ;

ˆ
ˆ

S

S

S

L t
J E






    
  
   

 (4) 

As a result, the variances of the parameters ˆ
S  can be provided from the main 

diagonal of its inverse matrix  1 ˆ
SJ  , namely, the estimated standard deviations ˆ

S  

of the parameters: 

  1 ˆˆ
S SJ   (5) 

Under the condition of mild regularity,  1 ˆ
SJ   can be calculated by Eq.(6): 
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2
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ˆ
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S

L t
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 (6) 

and the standard deviation can be estimated as:  
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L t
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 (7) 

The standard deviations of the transition rates of the BPLs, LCLs, and RTB are 

also estimated by the Fisher Information Methodology (Table 3). 

Table 3 Estimated transition rates 

Symbol Mean value (/yr) Standard deviation (/yr) 

λS 8.760e-1 7.720e-1 

λB 8.760e-3 7.867e-8 

λL 4.380e-2 1.981e-6 

λR 3.767e-4 1.332e-10 
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As a last remark, note that these estimates are not to be mandatorily estimated by 

the proposed procedure, but can be directly extracted from public databases (if 

available). 

2.3 Uncertainty propagation 

Uncertainty in binary transition rates is propagated through the RPS-MCM as 

follows (Fig. 4): 

1) Set initial time t0=0 and mission time T=6yr, and partition the time axis into 

small intervals of length dt=0.01yr; 

2) Sample the component failure rates from the Gaussian distributions 

 ˆ,k kN    that are shown in Table 3, where, k = S, B, L, R; 

3) For each time instant t before T, compute the system unreliability from the 

MCM (Norris, 1998; Ericson, 2005); 

  
    

 
    - 2 + 2- 2- +

2 1- -1
| , , , 1- 1+

B L

S B L R

t

L t

S B L R

B L

e
P t e

 

     
 

   
 




 
 
 
 

 (8) 

4) Repeat the steps 2) and 3) for Na=1000 times; 

5) Compute the 5th and 95th percentiles for each time instant t.  

Fig. 5 shows the plot of the pointwise double-sided 90% confidence interval of the 

system unreliability. The confidence interval is large all over the system life T, because 

of the large uncertainty that affects the MCM transition rates due to the weak knowledge 

utilized to build the, therefore, quite inaccurate RPS-MCM. 
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Calculate the system unreliability 

P(t|λS,λB,λL,λR)

YES

NO

Record P(t|λS,λB,λL,λR)

Set t=0

Obtain the double-sided 90% 

confidence interval

Simulation runs > Na
NO

YES

Sample transition rates of RTDs, 

BPLs, LCLs and RTB from their 

distributions

t = t + dt

t > T

 
Fig. 4 The flowchart of the two-loop MC simulation for the RPS-MCM system reliability 

assessment 
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Fig. 5 Confidence intervals from the RPS-MCM system unreliability 

3. RPS-MSPM 

3.1 The SA approach 

The purpose of this step of the analysis is the identification of the important 

components most important for the system unreliability. ThatThis can be a non-trivial 

problem, for complex systems whose components reliability characteristics (i.e., failure 

rates) are very uncertain (i.e., with large standard deviations), is a non-trivial problem. 

For the ease of clarity, hereafter, we will describe the approach on with reference to the 

case study, whose conclusions might result to be straightforward. 

For the RPS components, a MSPM is built for reliability assessment. The SA is 

performed as follows: 

1) Calculate the moment-independent sensitivity measures between the 

unreliability P(t) of Fig. 3 and the unreliability Pk(t) of its k-th module 

contributor (i.e., PBPL(t), PLCL(t), PRTB(t) and PInter-modules(t)), to identify the 

most important module in the system; 

2) Calculate the moment-independent measure for the sensitivity between the 

module unreliability Pk(t) and the unreliability of its l-th embedded component 

Pl(t), to identify the component most affecting the module unreliability. 

The moment-independent sensitivity measures here adopted are the Hellinger 

distance and Kullback-Leibler divergence (Diaconis et al., 1982; Gibbs et al., 2002; Di 

Maio et al., 2014b), which rest on a the common rationale that the sensitivity measures 

can be portrayed computed as expected generalized distances between the output 

distribution and the conditional output distribution given the model input(s) of interest 

(Borgonovo et al., 2016). In detail, the Hellinger distance Hk[p(t),pk(t)]  measures the 

difference between the pdf p(t) of the system unreliability and the pdf pk(t) of the k-th 

contributor to the system failure, i.e., BPL, LCL, RTB, Inter-modules (Diaconis et al., 

1982; Gibbs et al., 2002): 

              
1 1

2 22 21
, 1

2
k k k kH p t p t p t p t dt p t p t dt

   
            

   (9) 

The k-th contributor is important if Hk is small. 
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The Kullback-Leibler divergence KLk[p(t),pk(t)] measures the different 

information carried by the pdf p(t) of the system failure and the pdf pk(t) of the k-th 

contributor according to Eq. (10) (Diaconis et al., 1982; Gibbs et al., 2002): 

      
 

 
( , ) logk k

k

p t
KL p t p t p t dt

p t





 
   

 
  (10) 

with the values in  0, . In practical cases, the symmetric form of Kullback-Leibler 

divergence can be untilized as follows (Kullback et al., 1951): 

                , ,

1 1
, , , ,

2 2
sym k k sym k k k k k kKL p t p t KL p t p t KL p t p t KL p t p t                  (11) 

The k-th contributor is important if KLsym,k is small, in relative terms. 

3.1.1 The SA results 

Table 4 lists the Hellinger distance and Kullback-Leibler divergence values for 

each module contributor to the system unreliability, respectively: both measures 

identify the BPL as the most important contributor. 

Table 4 Ranking of contributors to the RPS unreliability 

Input Hk KLsym,k 

Intra-BPL 0.0013 6.4539e-6 

Intra-LCL 0.6398 2.4181 

Intra-RTB 0.6872 3.7300 

Inter-Module 0.6000 1.8809 

Since the BPL module plays the most significant role in affecting the reliability of 

the RPS, we now focus on identifying the BPL component most contributing to its 

failure. Fig. 6 shows the unreliability of the BPL module and of the components therein 

(i.e., PS(t) for the sensor and PB(t) for the BPL-component). The unreliability curves 

show that most of the BPL module unreliability PBPL(t) is contributed by the sensors, 

that is to say, the absorbing states of the sensors most contribute to the BPL module 

unreliability. 
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Fig. 6 Unreliability of the BPL module and of its components  

To rank the importance of the l-th component embedded in the BPL module, the 

two SA measures of Eqs. (9) and (11) are quantified. The sensors turn out to be the most 

important components contributing to the BPL module unreliability (see Table 5). 

Table 5 Ranking of the contributors to the BPL unreliability 

Input Hl KLsym,l 

Sensors 0.2391 0.2460 

BPLs 0.6219 2.1599 

 

3.2 The RPS-MSPM 

The results of the SA performed in Section 3.1 point at the RTD as the component 

deserving more modeling efforts for accurate RPS unreliability estimation. A 

component MSPM is here developed to describe the RTD degradation-to-failure 

process, inserting physics knowledge in the model. 

In general, a MSPM describes the dynamics of component degradation in terms of 

transitions among a finite number M of degradation states, depending on a parameter 

vector δ. Similarly to MCM, a state probability P is assigned to each degradation state, 

forming a state probability vector           0 1, , , , , , , , , ,j MP t P t P t P t P t        

for all M states (Di Maio et al., 2015; Li et al., 2012).  

The RTD-MSPM can be integrated into the RPS-MSPM of the RPS, to estimate 

the system failure probability accounting for both aging- and environmental-dependent 
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transition rates of the RTD. 

3.2.1 The RTD-MSPM 

As discussed in (Wang et al., 2016), among the RTDs failure modes (e.g., bias, 

drift, performance degradation, freezing and calibration error), experimental evidence 

suggests that the main failure mode is drift (Balaban et al., 2009). Drift is measured by 

the response time τ that the RTD needs to reach 63.2% of a sudden temperature change 

of the RTD. Aging t and air gap size δ between the bottom of the thermowell and the 

sensing tip (that changes because of contamination and mechanical shocks) are the most 

likely contributors to the drift (Hashemian, 2011; Swanson, 2007). The response time 

τ(t,δ) is assumed not to exceed the RTD failure threshold γY during normal operation 

and in relation to this, the RTD failure boundary is defined as   , 0F G t    , where, 

    , , YG t t      (12) 

The RTD-MSPM shown in Fig. 7 depicts, in a two-state diagram, the partition by 

F  of the safe domain S from the failure domain F of the RTD. The RTD-MSPM 

assumptions are described as follows: 

 0

RTDS  is the RTD functioning state and 1

RTDS  is the RTD drift failure state; 

 Transitions can occur between the two states with failure rate  |S t   and 

repair rate  |S t  , functions of the time t and the affecting factor δ; 

 At the initial time t=0, the RTD is in its initial functioning state 0

RTDS . 

0

RTDS 1

RTDS

 |S t 

 |S t 
 

Fig. 7 RTD-MSPM model 

3.2.2 Uncertainty analysis of the aging- and environmental-dependent transition 

rates 

To estimate the aging- and environmental-dependent transition rate λS(t|δ), we 

build the empirical relationship between τ, t and δ based on experimental data 
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(Hashemian, 2011; Yun et al., 2012). In literature, τ(t,δ) is usually treated separately, 

i.e., τ(t,0) and τ(0,δ). Hashemian, 2011 and Yun et al., 2012 provide a set of mean 

response times with standard deviations with respect to the aging time (see Table 6 and 

Fig. 8, δ=0) and a set of mean response times with respect to the air gap size without 

aging (listed in Table 7, t=0). Fig. 9 shows the trend of τ with deviations at discrete δ, 

when the RTD is new and data in Table 7 are used as interpolation data.  

Table 6 Experimental data for τ at fixed t and δ=0 (Yun et al., 2012) 

Aging Time t [yr] 0 2 4 5 6 

Mean Response Time 𝜏 [s] 2.1 4.4 4.8 5.0 5.2 

Standard Deviation σ(t,0) 1.67 0.77 0.72 0.77 0.67 

 

 

Fig. 8 τ(t,0) with standard deviations 

Table 7 Fitted τ at t=0 and discrete δ based on experimental data from (Hashemian, 

2011; Yun et al., 2012) 

Air gap size δ [mm] 0 0.4 0.8 1.2 1.6 2.0 2.4 

Mean Response time t [s] 2.10 3.80 4.97 5.93 7.02 8.58 10.95 

Standard Deviation σ(0,δ) 1.18 1.19 1.64 2.47 3.61 4.98 6.51 
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Fig. 9 τ(0,δ) with standard deviations 

An analytical function of τ(t,δ) can be obtained relying on (Wang et al., 2016): 

    , 1,tt t        (13) 

    2 2 2, 1, tt t        (14) 

where  ,t   is the mean value of the response time of Table 7 and Fig. 9, σ(t,δ) is its 

standard deviation, and the factor αt accounts for the changes of response time τ with 

the increase of t, by scaling the  , 0t  using the scale factor αt: 

  

 

,0

1,0
t

t

t








 

(15) 

where,    1 1,0 0,0   . 

The function τ(t,δ) consists in a surface fitted to realizations of τ(t,δ) sampled from 

the assumed Gaussian distributions with mean values  ,t   and standard deviations 

σ(t,δ) at each discrete point, as shown in Fig. 10 where one trial surface is plotted. 
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Fig. 10 Fitted surface of τ(t,δ) 

The transition rate λS(t|δ) and the cumulative distribution function (cdf) PS(t|δ) can, 

thus, be estimated as the probability of τ(t,δ) to exceed γY=8s at a given time t, based on 

a batch of MC simulations that are run as described in detail in (Wang et al., 2016). For 

the sake of clarity, the estimated λS(t|δ) for the surface of Fig. 10, obtained by simulating 

Nb=1000 different degradation processes, is plotted in Fig. 11.  

 

Fig. 11 Conditional failure rate λS(t|δ) of RTD new-to-drift failure mode 

It is worth mentioning that each trial surface results in a different expression of 

τ(t,δ), RTD failure boundary F , transition rate λS(t|δ) and the cdf, due to the randomly 

sampled discrete response times upon which the surface is built on. 

Therefore, the accuracy of the RTD-MSPM, to a large extent, depends on the 
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uncertainties of the RTD physical parameters that are used to build the surfaces. Indeed, 

the variance of the sampled τ(t,δ) greatly affects the output of the MSPM model, the 

RTD degradation process and the probability of failure boundary F  exceedance for 

each time. 

3.2.3 Three-loop MC simulation for uncertainty propagation through the RPS-

MSPM 

The RPS-MSPM model of Fig. 12 embeds the RTD-MSPM model of Fig. 7, while 

components other than the RTD are assumed to obey binary-state behaviors as in the 

reference MCM of Fig. 2. 

 2 S t 

 2 S t 
1

2

0

10

7

3 4

9 LC

BC R

R

8

6

5

2 BS

2 BS

2 LS

LS

 

Fig. 12 RPS-MSPM integrating the RTD-MSPM 

We propose the three-loop MC simulation for the RPS reliability assessment, with 

confidence quantification related to the uncertainty in the RTD physical parameters 

propagated through the surfaces τ(t,δ) of Section 3.2.2, and in the transition rates for 

the binary components that are accounted for by the Fisher Information Matrix of 

Section 2.2. The outmost loop within the following procedure (sketched also in Fig. 13) 

consists in randomly sampling the values of the physical RPS model parameters from 

their distributions and sampling the RTD failure time (step 4): 

1) Set initial time t0=0, mission time T=6yr and time step dt=0.01yr; 

2) Randomly sample the transition rates of the binary-states components (i.e., 

BPLs, LCLs, and RTB) from the Gaussian distributions  ˆ,k kN   of  Table 3, 
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where, k = B, L, R; 

3) Sample the failure times of the binary-states components, from the exponential 

distributions with the sampled transition rates; 

4) Randomly sample the multi-state RTD failure time by: 

4a) Fit the randomly sampled realizations of the RTD response time τ at each 

discrete point to a trial surface τ(t,δ); 

4b) Simulate the RTD degradation process evolution from t=t0 to t=T;  

4c) At each time t, sample the air gap size increment dδt from a normal 

distribution N(0,0.025t), resulting in δ = δ0 +dδt.  

4d) Calculate the response time τ on the fitted trial surface τ(t,δ).  

4e) Record the time t at which τ exceeds the threshold γY=8s, with air gap size 

δ. 

5) Integrate the RTD-MSPM into the RPS-MSPM; 

5a) Sort all the components sampled failure times; 

5b) Check whether the minimum of the sorted times exceeds T: 

 If yes, increase the unreliability counter at time T; 

 If not, check whether at that time the RPS-MSPM reaches any 

absorbing state and, if yes, increase the unreliability counter, or the 

reliability counter, otherwise. 

6) Run Nb=1000 times steps 1) to 5) to build the empirical P(t|δ;λB;λL;λR), based 

on the statistics of the system unreliability estimates collected at each time t; 

7) Estimate the 5th and 95th percentiles of the unreliability by repeating steps 1)-

6) for Nc=1000 times and collecting the related statistics; 

8) Obtain the pointwise double-sided 90% confidence intervals of the system 

unreliability calculated by the RPS-MSPM. 
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Sample the initial air gap size

δ0 ~ U(0,1)
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Fig. 13 Flowchart of the three-loop MC simulation 
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Fig. 14 shows the estimated P(t,δ) with the 90% confidence interval for the RPS-

MSPM of Fig. 12, obtained by the three-loop MC simulation. The confidence interval 

is large especially in [0.5, 1.5] yr, probably because the fitted trial surfaces at the basis 

of the uncertainty propagation considerably vary from each other due to the large 

variances of the data of Tables 6 and 7 utilized to build them. Despite that, as we shall 

see in what follows, the robustness of the assessment is much improved with respect to 

the RPS-MCM results. 

 

Fig. 14 Estimated RPS-MSPM unreliability with 90% confidence interval 

4. COMPARISON 

Fig. 15 shows the results of the RPS reliability assessment by the RPS-MCM of 

Section 2 and the RPS-MSPM of Section 3. In general terms, it can be concluded that 

the RPS-MSPM results provide a narrower confidence interval than the RPS-MCM, 

thanks to the integration of physics knowledge related to operational and environmental 

parameters. The confidence interval provided by the MSPM is larger than that of the 

MCM at the early stage of the RPS life (t<1yr): the main reason is that the fitting 

surfaces may considerably vary from trial to trial due to the large variance of the 

response times at the considered discrete points, which greatly affect the onset time of 

the RTD drift failure mode. 
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Fig. 15 System unreliability with confidence intervals, provided by MCM and MSPM 

For a quantification analysis, two indexes (i.e., the relative uncertainty interval 

width ζt and the relative age interval width ζP) are proposed in what follows to compare 

the accuracy of the MCM with that of the MSPM. 

4.1 The relative unreliability interval width 

At each time t, the ratio ζt between the mean value of the system unreliability and 

the width of the unreliability interval (i.e., the difference between the upper and lower 

bounds) is calculated. 

The larger ζt, the narrower is the confidence interval, and the more accurate the 

system reliability modeling approach. Fig. 16 shows that ζt(t|δ) of the MSPM is much 

larger than ζt(t) of the MCM: as t increases, the estimated system unreliability obviously 

increases but, since MSPM includes more (physics) knowledge on the system behavior 

than MCM, the confidence interval reduces more than that of the MCM. The zoom of 

Fig. 16 shows the evolution of ζt from t=0 to t=2yr: to further investigate the dispersion 

of the unreliability estimates within the bounds, we calculate, at each time, their 

empirical pdf and the respective cdf.  
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 Fig. 16 Relative unreliability interval width 

Ideally, we would prefer a reliability assessment method that provides distributions 

peaked on the mean value (rather than uniform distributions), because this would 

facilitate the decision maker that would, then, be more prone to accept the mean 

reliability value. Fig. 17 shows an example of possible empirical distributions (at time 

t=1yr, without any loss of generality). The decision maker would rely on the MSPM 

rather than the MCM (light and dark shadowed areas, respectively), because in the latter 

case most of the unreliability estimates confirm the MSPM to be more accurate than 

the MCM. 

 

Fig. 17 Example of empirical distributions of the unreliability value at t=1yr  
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Based on the real estimates collected with the Na MC simulations for the RPS-MCM 

reliability assessment of Section 2 and the Nc three-loop MC simulation for the RPS-

MSPM of Section 3, Figs. 18 and 19 show the pdf and cdf curves of the system 

unreliability at t=1yr. The pdf of the MCM, as well as its cdf, skews towards large 

unreliability values, compared to the pdf of the MSPM, demonstrating again the more 

probable overestimation of the system unreliability, if the decision maker were to resort 

to RPS-MCM. 

 

Fig. 18 pdf of the MCM estimates vs. pdf of the MSPM estimates at t=1yr 

 

Fig. 19 cdf of the MCM estimates vs. cdf of the MSPM estimates at t=1yr  
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4.2 The relative age interval width 

With respect to each system reliability value P, the ratio ζP between the mean value 

of the system failure time and the width of the age interval (i.e., the difference between 

the upper and lower bounds), is calculated. 

The larger ζP, the narrower the confidence interval, and the more accurate the 

system reliability estimate. Fig. 20 shows ζP(P|δ) of the MSPM and ζP(P) of the MCM. 

The latter is always larger than the former, whatever the value of P, that means that 

MSPM better models the RTD degradation and, therefore, provides more accurate 

failure time predictions than the MCM. For clarity sake, ζP(P) of the MCM is truncated 

at P=0.8 because the maximum unreliability of the lower bound of the MCM is 0.8 

within the mission time.  

 

Fig. 20 Relative age interval width 

To further investigate the dispersion of the age interval estimates, we calculate, at 

each unreliability value P, the empirical pdf and respective cdf. Ideally, we would prefer 

a reliability assessment method that provides distributions peaked on the mean value of 

the failure time. Fig. 21 shows an example of possible empirical distributions (at P=0.1, 

without any loss of generality). The decision-maker would rely on the MSPM rather 

than the MCM (light and dark shadowed areas, respectively) because in the latter case 

most of the failure time estimates confirm the MSPM to be more accurate than the 

MCM. 
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Fig. 21 Example of empirical distributions of the failure times at P=0.1 

Resorting to the real estimates collected with the Na MC simulation for the RPS-

MCM reliability assessment of Section 2 and the Nc three-loop MC simulation for the 

RPS-MSPM of Section 3, Figs. 22 and 23 are built with the pdf and cdf curves of the 

system failure times at P=0.1, respectively. The pdf of the MCM, as well as its cdf, 

skew towards the earlier values, compared with the pdf of the MSPM, revealing the 

more possible early-estimation of the failure times, if the decision maker resorts to a 

MCM. 

 

Fig. 22 pdf of the MCM estimates vs. pdf of the MSPM estimates at P=0.1 
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Fig. 23 cdf of the MCM estimates vs. cdf of the MSPM estimates at P=0.1  

 

5. CONCLUSIONS 

In this paper, a three-loop MC simulation is proposed to properly quantify the 

effect of uncertain aging- and environmental-dependent transition rates of a MSPM for 

system reliability assessment. The demanding knowledge and information 

requirements to build a system MSPM calls for the identification of the components 

most affecting the system reliability in order to limit the modeling efforts. The obtained 

component-level MSPM is, then, embedded into a system-level accurate model that can 

guarantee less uncertainty on the system unreliability estimation, compared to a binary-

state modeling approach such as the MCM. 

The application of the three-loop MC approach to a RPS system shows the twofold 

potential benefits of integrating the RTD physics knowledge into the system reliability 

modeling: on one hand, the narrower confidence interval of the system unreliability of 

the RPS-MSPM with respect to the RPS-MCM would more likely induce the decision-

maker to rely on the reliability assessment measures provided by the MSPM, whereas, 

on the other hand, the approach allows balancing modeling efforts and computational 

demand with accuracy of the results.  
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