
1 INTRODUCTION 

Multi-State Physics Modeling (MSPM) is a semi-
Markov modeling approach that can be used in 
component- or/and system-level reliability 
assessment, for accounting for the effects of both the 
stochastic degradation process and the uncertain 
environmental and operational parameters (Di Maio 
et al., 2015; Lin et al., 2015; Zio, 2016). MSPM 
offers the possibility of embedding the physical 
degradation process into the assessment (Wang et al., 
2016). 

However, this entails demanding efforts for 
modeling the physical relationships needed to build 
the physics-based models and high computational 
burden for manipulating the large amount of data, 
especially when treating their uncertainties (Aldemir, 
2013; Zio, 2014). As a result, a trade-off choice 
between modeling accuracy and computational 
demand is needed for practical reliability assessment 
based on MSPM of a complex system. In this study, 
Sensitivity Analysis (SA) is proposed for the 
assessment of a MSPM, to help the analyst to 
identify the components of a system that most 
deserve accurate modeling of aging- and 
environmental-dependent transition rates, for 
accurate system reliability assessment. The SA is 
performed based on moment-independent sensitivity 
measures, such as Hellinger distance and Kullback-
Leibler divergence (Diaconis et al., 1982; Gibbs et 
al., 2002; Di Maio et al., 2014).  

In what follows, Section 2 describes the Reactor 

Protection System (RPS) of a Nuclear Power Plant 
(NPP) taken as case study, and its Markov Chain 
Model (MCM) reliability model taken as reference 
model. In Section 3, SA in the MCM is performed 
and the Resistance Temperature Detector (RTD) is 
identified as the component most affecting the RPS 
reliability. Section 4, then, shows the best trade-off 
MSPM model for the system dynamic reliability 
assessment of the RPS and, in Section 5, some 
conclusions are drawn. 

2 THE REACTOR PROTECTION SYSTEM 

The objective of RPS is to trigger the NPP 
emergency shutdown, as soon as an anomaly is 
detected in the measurements of a relevant signal 
(here taken to be a temperature signal). As shown in 
Figure 1, the RPS considered is composed of two 
redundant channels (A and B). Each channel consists 
of one signal sensor (S-A and S-B), one Bistable 
Processor Logic (BPL) subsystem (BPL-A and BPL-
B), and one Local Coincidence Logic (LCL) 
subsystem (LCL-A and LCL-B). It is worth 
mentioning that given the important role that RTDs 
play in NPPs digital Instrumentation and Control 
(I&C) systems (Hashemian, 2011; Yun et al., 2012; 
Baraldi et al., 2015), we assume S-A and S-B of 
Figure 1 to be RTDs. 

If any of the two redundant measured signals 
exceeds a triggering threshold value, a Partial 
Tripping Signal (PTS) is sent to the corresponding 
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BPL. The signal processing proceeds only if both 
channels produce the PTS: each PTS from a BPL is 
sent to both LCL-A and LCL-B, which process 
information by an “AND” gate. In other words, an 
Emergency Shutdown Signal (ESS) is produced only 
when receiving two PTSs from different BPLs; ESSs, 
then, activates the Reactor Trip Breaker (RTB), 
when at least one ESS is triggered, i.e., the 
information is processed by an “OR” gate. Once the 
RTB is activated, the power supply system and 
Control Rod Drive Mechanism (CRDM), which are 
connected with the RTB come into use to control the 
power of the reactor. 
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Figure 1. A typical RPS (Wang et al., 2015) 

 
According to the RPS scheme reported in Figure 

1, three modules are identified: 
 The BPL Module consists of two groups of 

components: each one being the series of one 
sensor and BPL (i.e., “S-A and BPL-A” and “S-B 
and BPL-B”). 

 The LCL Module consists of the two LCLs (i.e., 
LCL-A and LCL-B). Since the ESS is triggered 
only when both LCLs simultaneously receive two 
PTSs from the two BPLs, this module is highly 
dependent on the BPL module. 

 The RTB Module. 

2.1 The RPS-MCM 

In this Section, a MCM model is proposed as 
reference model for the reliability assessment of the 
RPS. To do this, intra- and inter-module states 
leading to the system failure are to be identified and 
modeled. Intra-module states refer to the possible 
states of the components belonging to the same 
module, whereas, inter-modules states refer to the 
states that affect simultaneously components of 
different modules. 

Figure 2 shows the RPS-MCM, whose states are 
listed in Table 1.  

The following assumptions have been made for 
the subsequent quantitative analysis: 
 Transitions can occur from the system 

functioning state (state 0) to any of the absorbing 
states of the intra-module states, and from the 
intermediate state (state 3) to any of the absorbing 
states of the inter-modules states. The transition 
rates are assumed to be constant values, taken 
from public database (US: EPRI, 2008; IAEA, 
1992) and reported in Table 2. 

 Repair rates are assumed to be equal to 0. 
 
Table 1. Description of the states in RPS-MCM 

State Description 

0 RPS functioning state. 

1 Either one or the other RTD sensor fails. 

2 Either one or the other BPL fails to send out PTSs. 

3 Either one or the other LCL fails to produce the ESS. 

4 RTB fails during operation. 

5 One LCL has failed and, then, one sensor fails. 

6 One LCL has failed and, then, one BPL fails. 

7 Both LCLs fail to produce the ESS. 

8 One LCL has failed and, then, the RTB fails. 

9 Common cause failure of BPL-A and BPL-B. 

10 Common cause failure of LCL-A and LCL-B. 

11 RPS failure state. 

 
Table 2. Description of the transition rates in RPS-
MCM 

Symbol Description Value (/yr) 

λS RTD failure rate 8.760e-1 

β Common cause factor 0.1 

λBS BPL failure rate 7.884e-3 

λLS LCL failure rate 3.942e-2 

λBC BPLs common cause failure rate 8.760e-4 

λLC LCLs common cause failure rate 4.380e-3 

λR RTB failure rate 3.767e-4 
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Figure 2. The RPS-MCM model where states are grouped 
according to their intra-module and inter-modules 
characteristics. 

 
By the MCM quantitative analysis, the RPS 
unreliability P(t), its modules unreliabilities PBPL(t), 
PLCL(t), PRTB(t), and PInter-modules(t) are quantified 
(Figure 3). A visual analysis of the unreliability 
curves shows that most of the system unreliability 
P(t) is contributed by the BPL, that is to say, the 
absorbing states of the BPL module most contribute 
to the system unreliability. 

 
 
Figure 3. Unreliability curves of RPS and of its modules 

3 SENSITIVITY ANALYSIS FOR THE 
IDENTIFICATION OF THE COMPONENT 
MOST AFFECTING THE RPS RELIABILITY 

3.1 The SA approach 

The purpose of the analysis is the identification of 
the component contributing with the largest fraction 
to the system unreliability. The SA is performed as 
follows: 
1) Calculate a moment-independent measure of the 

sensitivity of the unreliability P(t) to the 
unreliability of its i-th single contributor Pi(t) (i.e., 

PBPL(t), PLCL(t), PRTB(t) and PInter-modules(t)), to 
identify the most relevant module in the system; 

2) Calculate the moment-independent measure for 
the sensitivity between the module unreliability 
Pi(t) and the unreliability of its j-th embedded 
component Pj(t), to identify the component most 
affecting the module unreliability. 
The moment-independent sensitivity measures 

here adopted are the Hellinger distance and 
Kullback-Leibler divergence (Diaconis et al., 1982; 
Gibbs et al., 2002; Di Maio et al., 2014). In detail, 
the Hellinger distance of Hi[p(t),pi(t)]  measures the 
difference between the pdf p(t) of the system 
unreliability P(t) and the pdf pi(t) of the i-th 
contributor to the system failure, i.e., BPL, LCL, 
RTB, Inter-modules, as follows (Diaconis et al., 
1982; Gibbs et al., 2002): 
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where the i-th contributor is important if Hi is small. 
On the other hand, the Kullback-Leibler 

divergence KLi[p(t),pi(t)] measures the different 
information carried by the pdf p(t) of the system 
failure and the pdf pi(t) of the i-th contributor as 
follows (Diaconis et al., 1982; Gibbs et al., 2002): 
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with values in [0, +  ]. In practical cases, the 
symmetric form of Kullback-Leibler divergence can 
be utilized as follows (Kullback et al., 1951): 
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where the i-th contributor is important if KLsym,i is 
small, in relative terms. 

3.2 Results 

Table 3 lists the Hellinger distance and Kullback-
Leibler divergence values for each contributor to the 
system unreliability, respectively. As suggested by 
Figure 3, both measures identify the BPL as the most 
important contributor (see Figures 4 and 5).  
 
Table 3. Ranking of contributors to the RPS 
unreliability 
Contributor Hi KLsym,i 

BPL module 0.0013 6.4539e-6 

LCL module 0.6398 2.4181 

RTB module 0.6872 3.7300 

Inter-modules 0.6000 1.8809 



 

 
Figure 4. Hellinger distance between the system unreliability 
curve and of its contributors 
 

 

 
Figure 5. Kullback-Leibler divergence between the system 
unreliability curve and of its contributors 
 

Since the BPL module plays the most significant 
role in affecting the reliability of the RPS, we now 
focus on identifying the BPL-embedded component 
most contributing to its failure. Figure 6 shows the 
unreliability of the BPL module and of the 
components therein embedded (i.e., PS(t) for the 
sensor and PB(t) for the BPL-component). 
 

 
 
Figure 6. Unreliability of the BPL module and of its embedded 
components 
 

To rank the importance of the j-th component 

embedded in the BPL module, the two SA measures 

of Eqs. (1) and (3) are quantified. The sensors turn 

out to be the most important components 

contributing to the BPL module unreliability (see 

Table 4, Figures 7 and 8).  

 
Table 4. Ranking of the contributors to the BPL 
unreliability 
Input Hj KLsym,j 

Sensors 0.2391 0.2460 

BPLs 0.6219 2.1599 

 

 

 
Figure 7. Hellinger distance between the unreliability curve of 
the BPL module and of its embedded components 
 

 

 
Figure 8. Kullback-Leibler divergence between the 
unreliability curve of the BPL module and of its embedded 
components  

4 THE SYSTEM-LEVEL MSPM 

The results of the SA performed in Section 3 point at 
RTD as deserving more efforts accurate modeling 
for the RPS unreliability estimation. A component-
level MSPM approach is here developed to describe 
the RTD degradation-to-failure process. The 
resulting model can be integrated into a system-level 
MSPM of the RPS, to estimate the system failure 
probability accounting for both aging- and 
environmental-dependent transition rates of the RTD 
(thus, embedding more knowledge into the modeling 
of the most important contributor to the RPS 
unreliability). Results are compared with those from 
the RPS-MCM.  

4.1 The RTD-MSPM 

Among the RTDs failure modes (e.g., bias, drift, 



performance degradation, freezing and calibration 
error), experimental evidence suggests that the main 
failure mode is drift (Balaban et al., 2009). Drift is 
measured by the response time τ that the RTD needs 
to reach 63.2% of a sudden temperature change of 
the RTD. Aging t and the air gap size δ between the 
bottom of the thermowell and the sensing tip (that 
changes because of contamination and mechanical 
shocks) are the most likely contributors to the drift 
(Hashemian, 2011). Therefore, the response time 
τ(t,δ) is assumed not to exceed a RTD failure 
threshold γY during normal operation and the RTD 
failure boundary is defined as  , 0F G t    , 
where, 

   , , YG t t                                                               (4) 

The RTD-MSPM shown in Figure 9 depicts, in a 
two-state diagram, the partition by F  of the safe 
domain S from the failure domain F of the RTD. The 
RTD-MSPM assumptions are described as follows: 

 0

RTDC  is the RTD functioning state and 1

RTDC  is 

the RTD drift failure state. 

 Transitions can occur between the two states with 

failure rate 
   0,1

,RTD t   and repair rate 
   1,0

,RTD t  , 

with respect to the aging time t and the affecting 

factor  . 

 At the initial time t=0, the RTD is in its initial 

functioning state 0

RTDC . 
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Figure 9. The RTD-MSPM model 

 
To estimate the transition rates, we build the 

empirical relationship plotted in Figure 10 between τ, 
t and δ based on the experimental data listed in 
Tables 5 and 6 (Hashemian, 2011; Yun et al., 2012). 
For further details on the empirical model, the 
interested the reader may refer to (Wang et al., 2016). 
 
Table 5. Experimental data for τ at fixed t and δ=0 
(Yun et al., 2012) 
Aging time t [yr] Response time τ [s] 

0 2.1 
2 4.4 
4 4.8 
5 5.0 
6 5.2 

 

Table 6. Experimental data for τ at t=0 and fixed δ 
(Hashemian, 2011; Yun et al., 2012) 
Air gap size δ [mm] Response time τ [s] 

0 0.9 
0 3.3 
0.2 4.1 
0.4 5.0 
0.5 2.94 
0.6 5.9 
0.8 6.5 
1.0 3.33 
1.0 7.5 
1.5 3.48 
2.0 3.58 

 

 

 
Figure 10. The empirical relationship τ(t,δ) 

 
Monte Carlo (MC) simulation is used to simulate 

the stochastic evolution of τ, when the relationship 
between τ, t and δ is taken as the one plotted in 
Figure 10. The cumulative distribution function (cdf) 
PS(t|δ) can, thus, be estimated as the probability of 
τ(t,δ) to exceed γY at a given time t, based on the 
batch of MC simulations that have been run. 

Figures 11 and 12 show the λS(t|δ) and PS(t|δ) 
obtained from RTD-MSPM, compared with λS of 
Table 1 and PS(t) of the MCM of Figure 6. It is 
worth noticing that λS(t|δ) of Figure 11 shows the 
typical infant mortality and wear out periods, and 
tends to be constant in the RTD useful life, which 
coincides with a general bath-tub curve hypothesis. 
In Figure 12 the PS(t|δ) is close to the PS(t) which, 
however, overestimates the unreliability of the RTD. 
The degradation process model in the MSPM is 
more realistic than in MCM, and on the other hand, 
the latter is not able to guarantee the drift onset 
beyond a threshold value (especially at low aging). 

 



 

 
Figure 11. Time-dependent failure rate from RTD-MSPM and 
constant failure rate from database 

 

 

 
Figure 12. The cdfs from RTD-MSPM and from RTD-MCM 

4.2 The system-level RPS-MSPM 

The system-level RPS-MSPM model of Figure 13 
enriches the RPS-MCM model of Figure 2 by 
embedding the RTD-MSPM model of Figure 9, 
whereas components other than the RTD are 
assumed to obey binary behaviors as in the reference 
MCM. It is worth pointing out the use of λS(t|δ) as 
the aging- and environmental-dependent transition 
rate of the RTD from functioning state to any of the 
state of the diagram that entails its involvement (i.e., 
states 0 to 1, and 3 to 5). 
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Figure 13. The system-level RPS-MSPM 
 

The cdf P(t|δ) (i.e., the RPS system unreliability 
when aging and factors affecting the degradation of 
the RTD are considered) can be estimated by 
resorting to a two-loop MC simulation (Wang et al., 
2016). In few words, the inner loop estimates the 
RTD failure time, by accounting for both stochastic 
(the air gap size between the sensing element tip and 
the thermowell bottom) and deterministic (the RTD 
age) processes, as described in Section 4.1, whereas 
the outer loop implements a crude direct Monte 
Carlo simulation (Zio, 2013) to build the P(t|δ), by 
sampling all the component failure times from the 
respective probability distributions. 

Figure 14 shows the comparison between P(t|δ) 
of the RPS-MSPM and P(t) of the RPS-MCM. With 
the integration of the MSPM of the most affecting 
component, overestimation of the system 
unreliability is reduced, so that over-conservatism of 
reactor design and over-demand of inspection and 
maintenance can be effectively avoided, especially 
at the early stage of the system life. 
 

 

 
Figure 14. System unreliability curves of the RPS-MSPM and 
of the RPS-MCM 

5 CONCLUSION 

In this study, a SA has been performed to find the 
most important module and the most affecting 
component in the module. This provides the 
indication to the analyst of which components 
deserves more accurate modeling, according to their 
contribution to the system unreliability. 

The case study shows that, once the most 
important component is identified, the additional 
modeling effort to build its component-level MSPM 
is paid back by the effective reduction of the 
overestimation of the system unreliability, compared 
to the MCM binary-states system-level modeling, 
supporting the system-level MSPM as an adequate 
model with controlled computation demand. 
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