9,815 research outputs found
A visualization of the damage in Lead Tungstate calorimeter crystals after exposure to high-energy hadrons
The anticipated performance of calorimeter crystals in the environment
expected after the planned High-Luminosity upgrade of the Large Hadron Collider
(HL-LHC) at CERN has to be well understood, before informed decisions can be
made on the need for detector upgrades. Throughout the years of running at the
HL-LHC, the detectors will be exposed to considerable fluences of fast hadrons,
that have been shown to cause cumulative transparency losses in Lead Tungstate
scintillating crystals. In this study, we present direct evidence of the main
underlying damage mechanism. Results are shown from a test that yields a direct
insight into the nature of the hadron-specific damage in Lead Tungstate
calorimeter crystals exposed to 24 GeV/c protons.Comment: 8 pages, 6 figure
Three-dimensional charge transport mapping by two-photon absorption edge transient-current technique in synthetic single-crystalline diamond
We demonstrate the application of two-photon absorption transient current
technique to wide bandgap semiconductors. We utilize it to probe charge
transport properties of single-crystal Chemical Vapor Deposition (scCVD)
diamond. The charge carriers, inside the scCVD diamond sample, are excited by a
femtosecond laser through simultaneous absorption of two photons. Due to the
nature of two-photon absorption, the generation of charge carriers is confined
in space (3-D) around the focal point of the laser. Such localized charge
injection allows to probe the charge transport properties of the semiconductor
bulk with a fine-grained 3-D resolution. Exploiting spatial confinement of the
generated charge, the electrical field of the diamond bulk was mapped at
different depths and compared to an X-ray diffraction topograph of the sample.
Measurements utilizing this method provide a unique way of exploring spatial
variations of charge transport properties in transparent wide-bandgap
semiconductors.Comment: This article may be downloaded for personal use only. Any other use
requires prior permission of the author and AIP Publishing. The following
article appeared in Applied Physics Letters and may be found at
https://doi.org/10.1063/1.509085
Performance studies of scintillating ceramic samples exposed to ionizing radiation
Scintillating ceramics are a promising, new development for various
applications in science and industry. Their application in calorimetry for
particle physics experiments is expected to involve an exposure to high levels
of ionizing radiation. In this paper, changes in performance have been measured
for scintillating ceramic samples of different composition after exposure to
penetrating ionizing radiation up to a dose of 38 kGy.Comment: 6 pages, 8 figures, to be published in the 2012 IEEE Nuclear Science
Symposium Conference Recor
Proof-of-principle of a new geometry for sampling calorimetry using inorganic scintillator plates
A novel geometry for a sampling calorimeter employing inorganic scintillators
as an active medium is presented. To overcome the mechanical challenges of
construction, an innovative light collection geometry has been pioneered, that
minimises the complexity of construction. First test results are presented,
demonstrating a successful signal extraction. The geometry consists of a
sampling calorimeter with passive absorber layers interleaved with layers of an
active medium made of inorganic scintillating crystals. Wavelength-shifting
(WLS) fibres run along the four long, chamfered edges of the stack,
transporting the light to photodetectors at the rear. To maximise the amount of
scintillation light reaching the WLS fibres, the scintillator chamfers are
depolished. It is shown herein that this concept is working for cerium fluoride
(CeF) as a scintillator. Coupled to it, several different types of
materials have been tested as WLS medium. In particular, materials that might
be sufficiently resistant to the High-Luminosity Large Hadron Collider
radiation environment, such as cerium-doped Lutetium-Yttrium Orthosilicate
(LYSO) and cerium-doped quartz, are compared to conventional plastic WLS
fibres. Finally, an outlook is presented on the possible optimisation of the
different components, and the construction and commissioning of a full
calorimeter cell prototype is presented.Comment: Submitted to Proceedings CALOR 2014, the 16th International
Conference on Calorimetry in High-Energy Physics, Giessen (Germany) 6 - 11
April 2014. To be published in Journal of Physics: Conference Series (10
pages, 15 figures
Research Proposal for an Experiment to Search for the Decay {\mu} -> eee
We propose an experiment (Mu3e) to search for the lepton flavour violating
decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16
mu-decays, four orders of magnitude better than previous searches. This
sensitivity is made possible by exploiting modern silicon pixel detectors
providing high spatial resolution and hodoscopes using scintillating fibres and
tiles providing precise timing information at high particle rates.Comment: Research proposal submitted to the Paul Scherrer Institute Research
Committee for Particle Physics at the Ring Cyclotron, 104 page
Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+
We perform amplitude analyses of the decays , , and , and measure CP-violating
parameters and partial branching fractions. The results are based on a data
sample of approximately decays, collected with the
BABAR detector at the PEP-II asymmetric-energy factory at the SLAC National
Accelerator Laboratory. For , we find a direct CP asymmetry
in of , which differs
from zero by . For , we measure the
CP-violating phase .
For , we measure an overall direct CP asymmetry of
. We also perform an angular-moment analysis of
the three channels, and determine that the state can be described
well by the sum of the resonances , , and
.Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree
with published versio
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s) = 1.96 TeV
We present a measurement of the top quark pair production cross section in
ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with
the Collider Detector at Fermilab. We select ttbar decays into the final states
e nu + jets and mu nu + jets, in which at least one b quark from the t-quark
decays is identified using a secondary vertex-finding algorithm. Assuming a top
quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat)
+1.1-0.9 (syst) pb. We also report the first observation of ttbar with
significance greater than 5 sigma in the subsample in which both b quarks are
identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3
(syst) pb.Comment: Accepted for publication in Physics Review Letters, 7 page
Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA
The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph
- …
