The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph