370 research outputs found

    Predicting Strand Transfer Length in Pretensioned Concrete: Eurocode versus North American Practice

    Full text link
    Prestressing strands are commonly used in pretensioned prestressed concrete bridge construction. Transfer length is an important parameter for structural design. This paper presents a comparative study on strand transfer length provisions from Eurocode 2 and North American practice, and identifies similarities and differences between both models. A database of measured transfer lengths according to several authors has been compiled and compared with predictions according to code provisions. The intervals of predictions are smaller than those corresponding to the experimental results, and they are smaller when code provisions are more simplified. The interval from Eurocode 2 is greater than that from American Concrete Institute (ACI) code 318, which, in turn, is greater than the interval from AASHTO. The number of underestimated cases is lower for Eurocode 2 because of the higher predicted values, but situations in which a short transfer length is unfavorable are neglected by all models because they are not good predictions of shorter measured transfer lengths. When a transfer length estimation criterion is based on an allowable free end slip, more cases are excluded from the ACI code 318 provisions.Martí Vargas, JR.; Hale, W. (2013). Predicting Strand Transfer Length in Pretensioned Concrete: Eurocode versus North American Practice. Journal of Bridge Engineering. 18(12):1270-1280. doi:10.1061/(ASCE)BE.1943-5592.0000456S12701280181

    Characterisation and expression of SPLUNC2, the human orthologue of rodent parotid secretory protein

    Get PDF
    We recently described the Palate Lung Nasal Clone (PLUNC) family of proteins as an extended group of proteins expressed in the upper airways, nose and mouth. Little is known about these proteins, but they are secreted into the airway and nasal lining fluids and saliva where, due to their structural similarity with lipopolysaccharide-binding protein and bactericidal/permeability-increasing protein, they may play a role in the innate immune defence. We now describe the generation and characterisation of novel affinity-purified antibodies to SPLUNC2, and use them to determine the expression of this, the major salivary gland PLUNC. Western blotting showed that the antibodies identified a number of distinct protein bands in saliva, whilst immunohistochemical analysis demonstrated protein expression in serous cells of the major salivary glands and in the ductal lumens as well as in cells of minor mucosal glands. Antibodies directed against distinct epitopes of the protein yielded different staining patterns in both minor and major salivary glands. Using RT-PCR of tissues from the oral cavity, coupled with EST analysis, we showed that the gene undergoes alternative splicing using two 5' non-coding exons, suggesting that the gene is regulated by alternative promoters. Comprehensive RACE analysis using salivary gland RNA as template failed to identify any additional exons. Analysis of saliva showed that SPLUNC2 is subject to N-glycosylation. Thus, our study shows that multiple SPLUNC2 isoforms are found in the oral cavity and suggest that these proteins may be differentially regulated in distinct tissues where they may function in the innate immune response

    Effect of exploitation and exploration on the innovative as outcomes in entrepreneurial firms

    Full text link
    [EN] The main aim of this study is to establish the effect of the Exploitation and Exploration; and the influence of these learning flows on the Innovative Outcome (IO). The Innovative Outcome refers to new products, services, processes (or improvements) that the organization has obtained as a result of an innovative process. For this purpose, a relationship model is defined, which is empirically contrasted, and can explains and predicts the cyclical dynamization of learning flows on innovative outcome in knowledge intensive firms. The quantitative test for this model use the data from entrepreneurial firms biotechnology sector. The statistical analysis applies a method based on variance using Partial Least Squares (PLS). Research results confirm the hypotheses, that is, they show a positive dynamic effect between the Exploration and the Innovative as outcomes. In the same vein, they results confirm the presence of the cyclic movement of innovative outcome with the Exploitation.In addition, this research is part of the Project ECO2015-71380-R funded by the Spanish Ministry of Economy, Industry and Competitiveness and the State Research Agency. Co-financed by the European Regional Development Fund (ERDF).Vargas-Mendoza, NY.; Lloria, MB.; Salazar Afanador, A.; Vergara Domínguez, L. (2018). Effect of exploitation and exploration on the innovative as outcomes in entrepreneurial firms. International Entrepreneurship and Management Journal. 14(4):1053-1069. https://doi.org/10.1007/s11365-018-0496-5S10531069144Alegre, J., & Chiva, R. (2008). Assessing the impact of organizational learning capability on product innovation performance: an empirical test. Technovation, 28, 315–326.Amara, N., Landry, R., Becheikh, N., & Ouimet, M. (2008). Learning and novelty of innovation in established manufacturing SMEs. Technovation, 28, 450–463.Aragón-Mendoza, J., Pardo del Val, M., & Roig, S. (2016). The influence of institutions development in venture creation decision: a cognitive view. Journal of Business Research, 69(11), 4941–4946.Ardichvili, A. (2008). Learning and knowledge sharing in virtual communities of practice: motivators, barriers, and enablers. Advances in Developing Human Resources, 10(4), 541–554.Argyris, C., & Schön, D. (1978). Organizational learning: a theory of action perspective. Reading: Addison Wesley.Bagozzi, R. P., Yi, Y., & Singh, S. (1991). On the use of structural equation models in experimental designs: two extensions international. Journal of Research in Marketing, 8, 125–140.Belda, J., Vergara L., Salazar, A., & Safont G. (2018). Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs, accepted for publication in Signal Processing.Boland, R. J. J., & Tenkasi, R. V. (1995). Perspective making and perspective taking in communities of knowing. Organization Science, 6(4), 350–372.Bontis, N., (1998). Intellectual capital: an exploratory study that develops measures models. Management Decision, 36, 63–76.Bontis, N. (1999). Managing an organizational learning system by aligning stocks and flows of knowledge: an empirical examination of intellectual capital, knowledge management, and business performance. 1999. Management of Innovation and New Technology Research Centre, McMaster University.Bontis, N., Keow, W., & Richardson, S. (2000). Intellectual capital and the nature of business in Malaysia. Journal of Intellectual Capital, 1(1), 85–100Bontis, N., Hullan, J., & Crossan, M. (2002). Managing an organizational learning system by aligning stocks and flows. Journal of Management Studies, 39, 438–469.Brachos, D., Kostopulos, K., Sodersquist, K. E., & Prastacos, G. (2007). Knowledge effectiveness, social context and innovation. Journal of Knowledge Management, 11(5), 31–44.Calantone, R. J., Cavusgil, S. T., & Zhao, Y. (2002). Learning orientation, firm innovation capability, and firm performance. Industrial Marketing Management, 31, 515–524.Chang, T. J., Yeh, S. P., & Yeh, I. J. (2007). The effects of joint rewards system in new product development. International Journal of Manpower, 28(3/4), 276–297.Chin, W. (1998). The partial least square approach to structural equation modeling. In G. A. Marcoulides (Ed.) (pp. 294–336). New Jersey: Lawrence Erlbaum Associates.Cho, N., Li, G., & Su, C. (2007). An empirical study on the effect of individual factors on knowledge sharing by knowledge type. Journal of Global Business and Technology, 3(2), 1–15.Cohen, W. M., & Levin, R. C. (1989). Empirical studies of innovation and market structure. In R. Schmalansee & R. D. Willing (Eds.), Handbook of industrial organization II. New York: Elsevier.Cohen, W. M., & Levinthal, D. A. (1990). Absorptive-capacity – a new perspective on learning and innovation. Administrative Science Quarterly, 35, 128–152.Cooper, R. G. (2000). New product performance: what distinguishes the star products. Austrian Journal of Management, 25, 17–45.Crossan, M., & Berdrow, I. (2003). Organizational learning and strategic renewal. Strategic Management Journal, 24, 1087–1105.Crossan, M., & Apaydin, M. (2010). A multi-dimensional framework of organizational innovation: a systematic review of the literature. Journal of Management Studies, 47(6), 1154–1191.Crossan, M., Lane, H. W., & White, R. E. (1999). An organizational learning framework: from intuition to institution. Academy of Management Review, 24, 522–537.Damanpour, F., & Aravind, D. (2012). Managerial innovation: conceptions, processes, and antecedents. Management and Organization Review, 8(2), 423–454.Damanpour, F., & Shanthi, G. (2001). The dynamics of the adoption of products and process innovations in organizations. Journal of Management Studies, 38(1), 21–65.Decarolis, D. M., & Deeds, D. L. (1999). The impact of stock and flows of organizational knowledge on firm performance: An empirical investigation of the biotechnology industry. Strategic Management Journal, 20, 953–968.Demartini, C. (2015). Relationships between social and intellectual capital: empirical Evidence from IC statements. Knowledge and Process Management, 22(2), 99–111.Dupuy, F. (2004). Sharing knowledge: they why and how of organizational change. Hampshire: Palgrave Macmillan.Fornell, C., & Bookstein, F. I. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440–452.Ganter, A., & Hecker, A. (2013). Deciphering antecedents of organizational innovation. Journal of Business Research, 66(5), 575–584.Ganter, A., & Hecker, A. (2014). Configurational paths to organizational innovation: qualitative comparative analyses of antecedents and contingencies. Journal of Business Research, 67, 1285–1292.Gopalakrishnan, S., & Damanpour, F. (1997). A review of innovation research in economics, sociology and technology management. International Journal of Management Science, 25, 15–28.Hedberg, B. (1981). How organizations learn and unlearn. In P. Nystrom & W. Starbuck (Eds.), Handbook of organizational design. New York: Oxford University.Hedlund, G., & Nonaka, I. (1993). Models of knowledge management in the west and Japan. In: P. Lorange, B. Chacravrarthy, J. Ross, and J. Van de ven (Eds.) Cambridge: Basil Blackwell.Henseler, J., Ringle, C.M., & Sinkovics, R.R. (2009). The use the partial least squares path modeling. In: R. Sinkovics and N. Pervez (Eds.) 277–319.Hsu, I. (2006). Enhancing employee tendencies to share knowledge-case studies on nine companies in Taiwan. International Journal of Information Management, 26(4), 326–338.Hsu, I. (2008). Knowledge sharing practices as a facilitating factor for improving organizational performance though human capital: a preliminary test. Expert Systems with Application, 35, 316–1326.Huang, Q., Davison, R., & Gu, J. (2008). Impact of personal and cultural factors on knowledge sharing in China. Asia Pacific Journal Management, 25(3), 451–471.Ibarra, H. (1993). Network centrality, power, and innovation involvement – determinants of technical and administrative roles. Academy of Management Journal, 36(3), 471–501.Iebra, I. L., Zegarra, P. S., & Zegarra, A. S. (2011). Learning for sharing: an empirical analysis of organizational learning and knowledge sharin. International Entrepreneurship Management Journal, 7, 509–518.Ipe, M. (2003). Knowledge sharing in organizations: a conceptual framework. Human Resource Development Review, 2(4), 337–359.Jenkin, T. (2013). Extending the 4I organizational learning model: information sources, foraging processes and tools. Administrative Sciences, 3, 96–109.Jiménez-Jiménez, D., & Sanz-Valle, R. (2011). Innovation, organizational learning, and performance. Journal of Business Research, 64, 408–417.Kane, G. C., & Alavi, M. (2007). Information technology and organizational learning: an investigation of exploration and exploitation processes. Organization Science, 18(5), 796–812.Kleinbaum, D. G., Kupper, N. N., Muller, K. E. (1988). Applied regression analysis and other Multivariable’s methods, PWS KENT.Klomp, L., & Van Leeuwen, G. (2001). Linking innovation and firm performance: a new approach. International Journal of the Economics of Business, 8(3), 343–364.Lansisalmi, H., Kivimaki, M., Aalto, P., & Ruoranen, R. (2006). Innovation in healthcare: a systematic review of recent research. Nursing Science Quarterly, 19(1), 66–72.Laperrière, A., & Spence, M. (2015). Enacting international opportunities: the role of organizational learning in knowledge-intensive business services. Journal of International Entrepreneurship, 13(3), 212–241.Levitt, B., & March, J. G. (1988). Organizational learning. Annual Review of Sociology, 14, 319–340.Lin, H. (2007). Knowledge sharing and firm innovation capability: an empirical study. International Journal of Manpower, 28(3/4), 315–332.Lloria, M. B., & Moreno-Luzón, M. D. (2014). Organizational learning: proposal of an integrative scale and research instrument. Journal of Business Research, 67, 692–697.March, J. G. (1991). Exploration and exploitation in organizational learning. Organizational Science, 2, 71–87.Matikainen, M., Terho, H., Parvinen, P., & Juppo, A. (2016). The role and impact of firm’s strategic orientations on launch performance: significance of relationship orientation. Journal of Business & Industrial Marketing, 31(5), 625–639.Mone, M. A., McKinley, W., & Barker, V. L. (1998). Organizational decline and innovation: a contingency framework. Academy of Management Review, 23, 115–132.Moreno-Luzón, M. D., & Lloria, B. (2008). The role of non-structural and informal mechanisms of integration and integration as forces in knowledge creation. British Journal of Management, 19, 250–276.Moskaliuk, J., Bokhorst, F., & Cress, U. (2016). Learning from others' experiences: how patterns foster interpersonal transfer of knowledge-in-use. Computers in Human Behavior, 55, 69–75.Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company. How Japanese companies create the dynamics of innovation. New York: Oxford University Press.Nonaka, I., & von Krogh, G. (2009). Perspective tacit knowledge and knowledge conversion: controversy and advancement in organizational knowledge creation theory. Organization Science, 20(3), 635–652.Parida, V., Lahti, T., & Wincent, J. (2016). Exploration and exploitation and firm performance variability: a study of ambidexterity in entrepreneurial firms. International Entrepreneurship Management Journal, 12, 1147–1164.Pew, H., Plowman, D., & Hancock, P. (2008). The involving research on intellectual capital. Journal of Intellectual Capital, 9, 585–608.Potter, R. E., & Balthazard, P. A. (2004). The role of individual memory and attention processes during electronic brainstorming. MIS Quarterly, 28(4), 621–643.Ramadani, V., Hyrije, A. A., Léo-Paul, D., Gadaf, R., & Sadudin, I. (2017). The impact of knowledge spillovers and innovation on firm-performance: findings from the Balkans countries. International Entrepreneurship Management Journal, 13, 299–325.Ren, S., Shu, R., Bao, Y., & Chen, X. (2016). Linking network ties to entrepreneurial opportunity discovery and exploitation: the role of affective and cognitive trust. International Entrepreneurship and Management Journal, 12(2), 465–485.Ringle, C. M., Wende, S., & Will, A. (2005). Smart PLS 2.0 (M3) beta, Hamburg: http://www.smartpls.de .Ringle, C. M., Sarstedt, M., & Straub, D. (2012). A critical look at the use of PLS-SEM. MIS Quarterly, 36(1), iii–xiv.Sanchez, R., & Heene, A. (1997). A competence perspective on strategic learning and knowledge management. En Sanchez, R. and Heene, A. (eds.) Strategic learning and knowledge management. John Wiley and Sons.Seidler-de Alwis, R., & Hartmann, E. (2008). The use of tacit knowledge within innovative companies: knowledge management in innovative enterprises. Journal of Knowledge Management, 12(1), 133–147.Shrivastava, P. (1983). A typology of organizational learning systems. Journal of Management Studies, 20, 7–28.Tansky, J., Ribeiro, D., & Roig, S. (2010). Linking entrepreneurship and human resources in globalization. Human Resource Management, 49(2), 217–223.Teece, D. (2012). Dynamic capabilities: routines versus entrepreneurial action. Journal of Management Studies, 49(8), 1395–1401.Tenenhaus, M., Vinzi, V., Chatelin, Y., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 49, 159–205.vande Vrande, V., de Jong, J., Vanhaverbeke, W., & Rochemont, M. (2009). Open innovation in SMEs: trends, motives and management challenges. Technovation, 29, 423–437.Vargas, N., & Lloria, M. B. (2014). Dynamizing intellectual capital through enablers and learning flows. Industrial Management and Data Systems, 114(1), 2–20.Vargas, N., & Lloria, M. B. (2017). Performance and intellectual capital: how enablers drive value creation in organisations. Knowledge and Process Management, 24(2), 114–124.Vargas, N., Lloria, M. B., & Roig-Dobón, S. (2016). Main drivers of human capital, learning and performance. The Journal of Technology Transfer, 41(5), 961–978.Vergara, L., Salazar, A., Belda, J., Safont, G., Moral, S., & Iglesias, S. (2017). Signal processing on graphs for improving automatic credit card fraud detection. Proceeding of 2017 I.E. 51st international Carnahan Conference on Security Technology (ICCST 2017), https://doi.org/10.1109/CCST.2017.8167820 , 23–26 Oct, 2017, Madrid, Spain.Wallin, M. W., & Von Krogh, G. (2010). Organizing for open innovation: focus o the integration of knowledge. Organizational Dynamics, 39(2), 145–154.Wang, C. L., & Ahmed, P. K. (2004). Linking innovation and firm performance: a new approach. European International Journal of Technology Management, 27, 674–688.Wold, H. (1980). Model construction and evaluation when theoretical knowledge is scarce. In J. Kmenta & J. B. Ramsey (Eds.), Evaluation of econometric models (pp. 47–74). Cambridge: Academic Press.Wold, H. (1985). Factors influencing the outcome of economic sanctions. In Sixto Ríos Honorary. Trabajos de Estadística and de Investigación Operativa, 36(3), 325–337

    La cuerda dulce – a tolerability and acceptability study of a novel approach to specimen collection for diagnosis of paediatric pulmonary tuberculosis

    Get PDF
    BACKGROUND: Recent data demonstrate the utility of the string test for the diagnosis of sputum-scarce HIV-associated TB in adults. We hypothesized that, if well-tolerated by children, this simple tool might offer a breakthrough in paediatric TB diagnosis. Thus the objective of this study, undertaken in the paediatric service of the Hospital Nacional Dos de Mayo, Lima, Perú, was to determine the tolerability and acceptability of the string test to paediatric TB suspects, their parents and nursing staff. METHODS: 22 paediatric subjects aged 3–14 years (median 8) under investigation for TB were invited to undergo 2 string tests (four-hour downtime each). Subjective and objective pain and discomfort rating scales were used to assess the perception of the subject, parent and attending nurse. RESULTS: Patients as young as 4 years tolerated the procedure extremely well with 84% willing to undergo a second procedure. Peak discomfort at the time of swallowing and of string retrieval was mild (30% of maximum possible score) and brief as judged by visual analogue ratings and objective indicators. Good concordance of parent/child and objective/subjective ratings strengthened the validity of these findings. CONCLUSION: The string test is well tolerated and achievable for most paediatric TB suspects as young as 4 years. A formal prospective paediatric efficacy study is now needed

    BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands.

    Get PDF
    The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function

    An e-health driven laboratory information system to support HIV treatment in Peru: E-quity for laboratory personnel, health providers and people living with HIV

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peru has a concentrated HIV epidemic with an estimated 76,000 people living with HIV (PLHIV). Access to highly active antiretroviral therapy (HAART) expanded between 2004-2006 and the Peruvian National Institute of Health was named by the Ministry of Health as the institution responsible for carrying out testing to monitor the effectiveness of HAART. However, a national public health laboratory information system did not exist. We describe the design and implementation of an e-health driven, web-based laboratory information system - NETLAB - to communicate laboratory results for monitoring HAART to laboratory personnel, health providers and PLHIV.</p> <p>Methods</p> <p>We carried out a needs assessment of the existing public health laboratory system, which included the generation and subsequent review of flowcharts of laboratory testing processes to generate better, more efficient streamlined processes, improving them and eliminating duplications. Next, we designed NETLAB as a modular system, integrating key security functions. The system was implemented and evaluated.</p> <p>Results</p> <p>The three main components of the NETLAB system, registration, reporting and education, began operating in early 2007. The number of PLHIV with recorded CD4 counts and viral loads increased by 1.5 times, to reach 18,907. Publication of test results with NETLAB took an average of 1 day, compared to a pre-NETLAB average of 60 days. NETLAB reached 2,037 users, including 944 PLHIV and 1,093 health providers, during its first year and a half. The percentage of overall PLHIV and health providers who were aware of NETLAB and had a NETLAB password has also increased substantially.</p> <p>Conclusion</p> <p>NETLAB is an effective laboratory management tool since it is directly integrated into the national laboratory system and streamlined existing processes at the local, regional and national levels. The system also represents the best possible source of timely laboratory information for health providers and PLHIV, allowing patients to access their own results and other helpful information about their health, extending the scope of HIV treatment beyond the health facility and providing a model for other countries to follow. The NETLAB system now includes 100 diseases of public health importance for which the Peruvian National Institute of Health and the network of public health laboratories provide testing and results.</p

    Clinical Practice: Giant Cell Tumour of the Jaw Mimicking Bone Malignancy on Three-Dimensional Computed Tomography (3D CT) Reconstruction

    Get PDF
    A wide range of diseases may present with radiographic features of osteolysis. Periapical inflammation, cysts and benign tumours, bone malignancies, all of these conditions may show bone resorption on radiograph. Features of the surrounding bone, margins of the lesion, and biological behaviour including tendency to infiltration and root resorption, may represent important criteria for distinguishing benign tumours from their malign counterpart, although the radiographic aspect of the lesion is not always predictive. Therefore a critical differential diagnosis has to be reached to choose the best management. Here, we report a case of giant cell tumour (GCT) whose radiological features by computed tomography (CT) suggested the presence of bone malignancy, whereas the evaluation of a routine OPT scan comforted us about the benign nature of the lesion. A brief review of the literature on such a benign but locally aggressive neoplasm is also provided

    Clinical Practice: Giant Cell Tumour of the Jaw Mimicking Bone Malignancy on Three-Dimensional Computed Tomography (3D CT) Reconstruction

    Get PDF
    A wide range of diseases may present with radiographic features of osteolysis. Periapical inflammation, cysts and benign tumours, bone malignancies, all of these conditions may show bone resorption on radiograph. Features of the surrounding bone, margins of the lesion, and biological behaviour including tendency to infiltration and root resorption, may represent important criteria for distinguishing benign tumours from their malign counterpart, although the radiographic aspect of the lesion is not always predictive. Therefore a critical differential diagnosis has to be reached to choose the best management. Here, we report a case of giant cell tumour (GCT) whose radiological features by computed tomography (CT) suggested the presence of bone malignancy, whereas the evaluation of a routine OPT scan comforted us about the benign nature of the lesion. A brief review of the literature on such a benign but locally aggressive neoplasm is also provided

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+K+μ+μB^+ \to K^+\mu^+\mu^-, B0K(892)0μ+μB^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0ϕ(1020)μ+μB^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+K+μ+μB^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0K0μ+μB^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0ϕμ+μdecayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let
    corecore