17 research outputs found

    Measurement of the cross-section for b-jets produced in association with a Z boson at root s=7 TeV with the ATLAS detector ATLAS Collaboration

    Get PDF
    A measurement is presented of the inclusive cross-section for b-jet production in association with a Z boson in pp collisions at a centre-of-mass energy of root s = 7 TeV. The analysis uses the data sample collected by the ATLAS experiment in 2010, corresponding to an integrated luminosity of approximately 36 pb(-1). The event selection requires a Z boson decaying into high P-T electrons or muons, and at least one b-jet, identified by its displaced vertex, with transverse momentum p(T) > 25 GeV and rapidity vertical bar y vertical bar < 2.1. After subtraction of background processes, the yield is extracted from the vertex mass distribution of the candidate b-jets. The ratio of this cross-section to the inclusive Z cross-section (the average number of b-jets per Z event) is also measured. Both results are found to be in good agreement with perturbative QCD predictions at next-to-leading order

    Experimental and Statistical Study on Machinability of the Composite Materials with Metal Matrix Al/B4C/Graphite

    No full text
    NAS, Engin/0000-0002-4828-9240WOS: 000408884300055In this study, four types of Al/B4C/Graphite metal matrix composites (MMCs) were produced by means of a hot-pressing technique with reinforcement elements, B4C 8 wt pct and graphite (nickel coated) 0, 3, 5, and 7 wt pct. Machinability tests of MMC materials thus produced were conducted using four different cutting speeds (100, 140, 180, and 220 m/min), three different feed rates (0.1, 0.15, and 0.20 mm/rev), and a fixed cutting depth (0.5 mm), and the effects of the cutting parameters on the average surface roughness were examined. After the machinability tests, the height of the built-up edge (BUE) formed on the cutting tools related to the cutting speed and feed rate was measured. The test results were examined by designing a matrix according to the full factorial design and the average surface roughness, and the most important factors leading to formation of the BUE were analyzed by the analysis of variance (ANOVA). As a result of analysis, it was found that the lowest surface roughness value was with 7 wt pct graphite MMC material, while the highest was without graphite powder. Based on the statistical analysis results, it was observed that the most important factor affecting average surface roughness was the type of MMC material, the second most effective factor was the feed rate, and the least effective factor was the cutting speed. Furthermore, it was found that the most important factor affecting the formation of the BUE was the type of MMC material, the second most effective factor was the cutting speed, and the least effective factor was the feed rate.Karabuk University Scientific Research Project DivisionKarabuk University [KBU-BAP-13/2-DR-012]The authors sincerely thank the Karabuk University Scientific Research Project Division for the financial support of Project No. KBU-BAP-13/2-DR-012
    corecore