94 research outputs found

    RECURRENT NOVAE IN M31

    Get PDF
    The reported positions of 964 suspected nova eruptions in M31 recorded through the end of calendar year 2013 have been compared in order to identify recurrent nova candidates. To pass the initial screen and qualify as a recurrent nova candidate two or more eruptions were required to be coincident within 0.1', although this criterion was relaxed to 0.15' for novae discovered on early photographic patrols. A total of 118 eruptions from 51 potential recurrent nova systems satisfied the screening criterion. To determine what fraction of these novae are indeed recurrent the original plates and published images of the relevant eruptions have been carefully compared. This procedure has resulted in the elimination of 27 of the 51 progenitor candidates (61 eruptions) from further consideration as recurrent novae, with another 8 systems (17 eruptions) deemed unlikely to be recurrent. Of the remaining 16 systems, 12 candidates (32 eruptions) were judged to be recurrent novae, with an additional 4 systems (8 eruptions) being possibly recurrent. It is estimated that ~4% of the nova eruptions seen in M31 over the past century are associated with recurrent novae. A Monte Carlo analysis shows that the discovery efficiency for recurrent novae may be as low as 10% that for novae in general, suggesting that as many as one in three nova eruptions observed in M31 arise from progenitor systems having recurrence times <~100 yr. For plausible system parameters, it appears unlikely that recurrent novae can provide a significant channel for the production of Type Ia supernovae

    Dimers, Effective Interactions, and Pauli Blocking Effects in a Bilayer of Cold Fermionic Polar Molecules

    Full text link
    We consider a bilayer setup with two parallel planes of cold fermionic polar molecules when the dipole moments are oriented perpendicular to the planes. The binding energy of two-body states with one polar molecule in each layer is determined and compared to various analytic approximation schemes in both coordinate- and momentum-space. The effective interaction of two bound dimers is obtained by integrating out the internal dimer bound state wave function and its robustness under analytical approximations is studied. Furthermore, we consider the effect of the background of other fermions on the dimer state through Pauli blocking, and discuss implications for the zero-temperature many-body phase diagram of this experimentally realizable system.Comment: 18 pages, 10 figures, accepted versio

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs

    Full text link
    We describe the design and performance of the near-infrared (1.51--1.70 micron), fiber-fed, multi-object (300 fibers), high resolution (R = lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~ 10^5 red giant stars that systematically sampled all Milky Way populations (bulge, disk, and halo) to study the Galaxy's chemical and kinematical history. It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014 using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV, as well as a second spectrograph, a close copy of the first, operating at the 2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several fiber-fed, multi-object, high resolution spectrographs have been built for visual wavelength spectroscopy, the APOGEE spectrograph is one of the first such instruments built for observations in the near-infrared. The instrument's successful development was enabled by several key innovations, including a "gang connector" to allow simultaneous connections of 300 fibers; hermetically sealed feedthroughs to allow fibers to pass through the cryostat wall continuously; the first cryogenically deployed mosaic volume phase holographic grating; and a large refractive camera that includes mono-crystalline silicon and fused silica elements with diameters as large as ~ 400 mm. This paper contains a comprehensive description of all aspects of the instrument including the fiber system, optics and opto-mechanics, detector arrays, mechanics and cryogenics, instrument control, calibration system, optical performance and stability, lessons learned, and design changes for the second instrument.Comment: 81 pages, 67 figures, PASP, accepte

    On the Spectroscopic Classes of Novae in M33

    Get PDF
    We report the initial results from an ongoing multi-year spectroscopic survey of novae in M33. The survey resulted in the spectroscopic classification of six novae (M33N 2006-09a, 2007-09a, 2009-01a, 2010-10a, 2010-11a, and 2011-12a) and a determination of rates of decline (t_2 times) for four of them (2006-09a, 2007-09a, 2009-01a, and 2010-10a). When these data are combined with existing spectroscopic data for two additional M33 novae (2003-09a and 2008-02a) we find that 5 of the 8 novae with available spectroscopic class appear to be members of either the He/N or Fe IIb (hybrid) classes, with only two clear members of the Fe II spectroscopic class. This initial finding is very different from what would be expected based on the results for M31 and the Galaxy where Fe II novae dominate, and the He/N and Fe IIb classes together make up only ~20% of the total. It is plausible that the increased fraction of He/N and Fe IIb novae observed in M33 thus far may be the result of the younger stellar population that dominates this galaxy, which is expected to produce novae that harbor generally more massive white dwarfs than those typically associated with novae in M31 or the Milky Way.Comment: 30 pages; 5 figures; accepted for publication in the Astrophysical Journal; second version corrects some references to Table 3, and a few typo

    Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    Get PDF
    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.Comment: Contact authors: R.H.D. Corbet, M. Kerr, C.C. Cheun

    SN 2005cs in M51 II. Complete Evolution in the Optical and the Near-Infrared

    Get PDF
    We present the results of the one year long observational campaign of the type II-plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool Galaxy). This extensive dataset makes SN 2005cs the best observed low-luminosity, 56Ni-poor type II-plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km/s) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 days after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 days. In addition to optical observations, we also present near-infrared light curves that (together with already published UV observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi-analytic model, we infer for SN 2005cs a 56Ni mass of about 0.003 solar masses, a total ejected mass of 8-13 solar masses and an explosion energy of about 3 x 10^50 erg.Comment: 18 pages, 18 figures, accepted for publication in MNRA

    The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V

    Full text link
    The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Comment: Accepted to ApJ

    The eighteenth data release of the Sloan Digital Sky Surveys : targeting and first spectra from SDSS-V

    Get PDF
    The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Publisher PDFPeer reviewe

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore